Computer Communications 91-92 (2016) 109-119

Contents lists available at ScienceDirect

COI’I]pUtCI‘
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Hardware accelerator to speed up packet processing in NDN router @CmssMark

Weiwen Yu, Derek Pao*

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

ARTICLE INFO ABSTRACT

Article history:

Received 4 December 2015
Revised 17 June 2016
Accepted 18 June 2016
Available online 23 June 2016

A hardware implementation of the pending interest table (PIT) for named data networking (NDN) is pre-
sented. One of the major challenges in this research is the per-packet update requirement in NDN packet
processing. In general, the data structure of the lookup table is optimized in order to minimize the im-
plementation cost and maximize the lookup performance. However, more computation steps are required
to update the highly optimized data structure. Thus, the design of the hardware lookup table needs to
tradeoff between the implementation cost, lookup performance and update cost. We employ an on-chip
Bloom Filter and an off-chip linear-chained hash table in our design. The lookup operation for an in-
terest/data packet and the associated update operation are integrated into one task. This can effectively
reduce the overall processing time and the I[/O communications with the software control unit. Our de-
sign also incorporates a name ID table (nidT) to store all distinct name IDs (nid) in the PIT. If the content
name in an interest packet can be found in the nidT, then the router needs not look up the forwarding
information base (FIB) to determine how to forward the interest packet. This can reduce the workload of
the FIB significantly. For proof-of-concept, the proposed hardware architecture is implemented on a FPGA
and the overall packet processing rate is about 56 to 60 million packets per second.

Keywords:

Packet processing
Named data networking
Hardware lookup table

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Internet is one of the greatest inventions of all time. It has
enormous impacts on various aspects of human civilization, e.g.
science and technology, business operations, social behavior, and
government. The Internet is a host-based communication network.
A host connected to the Internet is identified by an Internet Proto-
col (IP) address. In order to set up a communication channel, the
end users must know the IP address of the other parties. Driven
by advancements in both software and hardware technologies, the
communication needs have gradually shifted from point-to-point
message exchanges to content distributions, i.e. the dissemination
of digital media such as music, picture, video, e-book, etc. The
global demand for data is nearing 30 exabytes (30 billion giga-
bytes) per month in 2011. Also, it was estimated that about 500
exabytes of new on-line contents had been created in 2008 alone
[1].

Under the current communication model of the Internet, a user
has to find out where the contents are located in order to make a
request to retrieve the required data. A user has to know “where”
in addition to “what” he/she wants to retrieve. One can easily see

* Corresponding author. Fax: +85234420562.
E-mail addresses: weiwenyu2-c@my.cityu.edu.hk (W. Yu), d.pao@cityu.edu.hk (D.
Pao).

http://dx.doi.org/10.1016/j.comcom.2016.06.004
0140-3664/© 2016 Elsevier B.V. All rights reserved.

a serious semantic gap between the existing host-based communi-
cation model and the content-centric communication needs.

Named Data Networking (NDN) [2,3] is a new network architec-
ture proposed by the computer network community to better sup-
port the emerging communication needs. Packets under the NDN
framework are identified by names, instead of the IP address/port
number in the conventional Internet Protocol. Unlike the fixed-
length IP address, a packet name can have arbitrary length. Packet
forwarding in a NDN router involves more complex name-lookup
operations.

Communications in NDN are initiated by receivers. A user wish-
ing to retrieve a given content sends out an interest packet (a re-
quest) to a NDN router. The interest packet carries the name that
identifies the desired data unit, e.g. a segment of a video file.
When the NDN router receives an interest packet from an interface
(called a face in the NDN terminology), the router will perform the
following actions:

 The router will check its cache store (CS) to see if the requested
data packet is already available. If a matching data packet can
be found, then the data packet will be sent out along the face
where the interest packet is received.

« If the requested data packet is not available in the CS, the
router will search the Pending Interest Table (PIT) to see if the
processing of the request for the same data packet is already
in-progress. If a matching entry is found in the PIT, the given

http://dx.doi.org/10.1016/j.comcom.2016.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.06.004&domain=pdf
mailto:weiwenyu2-c@my.cityu.edu.hk
mailto:d.pao@cityu.edu.hk
http://dx.doi.org/10.1016/j.comcom.2016.06.004

110 W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119

face will be added to the list of faces associated with the PIT
entry.

« If no matching entry is found in the PIT, a new entry for the
packet name will be added to the PIT. The router will then look
up the Forwarding Information Base (FIB) to determine the next-
hop for the given Interest packet. The lookup operation in the
FIB is a component-based longest prefix match (LPM).

A response to the interest packet (i.e. a data packet) will be
generated when (i) the interest packet reaches the source of the
requested data; or (ii) the requested data packet can be found in
the CS of a NDN router on the path towards the data source. On
receiving a data packet, the NDN router will perform the following
actions:

« The router looks up its PIT. If a matching interest is found, the
data packet will be sent along the list of faces associated with
the pending interest, and the corresponding PIT entry will be
removed. The data packet may be cached based on the cache
management policy. As a result, the CS will also be updated.

« If the given name cannot be found in the PIT, the data packet
is unsolicited and it will be discarded.

The functional requirements of packet processing in the NDN
architecture have been defined, but the design and implementa-
tion of the NDN router is still a research problem pursued by the
academia and industry. One of the major research issues is re-
lated to the implementation of the lookup tables to support NDN
packet processing [4-18]. Most of the previous publications on
the implementation of lookup tables in NDN router are software-
based, and up to now there are only a couple of publications
on hardware implementation. This development trend resembles
the historical development of the IP address lookup problem. In
the 1990s, researches on IP address lookup methods were mostly
software-based [19-21]. Throughput of software-based methods
is limited and cannot meet the throughput requirements of core
router. Researches on IP address lookup methods gradually shifted
to hardware-based approaches in the 2000s [22-26].

Packet processing in NDN involves 3 major lookup tables,
namely the FIB, PIT and CS. The CS is an optional component.
The network can function properly without the CS. However, its
present may enhance the overall system performance. To the best
of our knowledge, we have only seen 1 published paper that
presents a hardware implementation of the FIB [18]. The method
of [18] requires the router to have 2 switch fabrics. Another ap-
proach to speed up the FIB lookup is to exploit the massively par-
allel computation power of GPU [13-15]. Routers without the re-
quired special hardware (e.g. one more switch fabric or GPU) may
only implement the FIB using conventional software technology.
Previously published software implementations of the PIT and FIB
can only achieve packet processing rate of a few million packets
per second (MPPS). In this paper, we shall present a hardware ac-
celerator that can improve the packet processing rate of the PIT
up to 60 MPPS, and reduce the workload of FIB lookup signifi-
cantly, e.g. by 10 times or more. Hence, a software-based FIB may
offer sufficient throughput for the NDN router. Our method can
be extended to include the CS table as well. A major issue that
is being addressed in this study is the stateful processing require-
ment in NDN. The hardware accelerator provides a simple interface
and aims to minimize the workload of the software. It functions
like a TCAM (ternary content addressable memory) co-processor
[27] in conventional TCP/IP router. The network processor submits
lookup/update requests to the hardware accelerator, which carries
out the request and returns the lookup results. The network pro-
cessor will then carry out the required actions accordingly.

The organization of the remaining parts of this paper is as fol-
lows. Basic packet processing requirements in NDN is analyzed in

Section 2. A brief review of related work is presented in Section 3.
The architecture of the proposed hardware accelerator is presented
in Section 4. Performance evaluations and simulations results are
presented in Section 4.2. Section 5 is the conclusion and future
work.

2. Packet processing challenges in NDN

A fundamental difference between the packet processing in
NDN and conventional TCP/IP routers is that NDN requires state-
ful processing, whereas TCP/IP only requires stateless processing.
In the conventional TCP/IP router, the processing (e.g. admission,
queueing and forwarding) of an incoming packet is independent
of the packet arrival history. The nominal update frequency to
the IP routing table is about a few hundred times per second.
Some recent hardware implementations of IP address lookup en-
gine [26] and multi-field packet classifier [28] support packet pro-
cessing rate at 300 plus MPPS. The update to lookup ratio in IP
routing table is very low, e.g. a few updates per million lookup. The
update to lookup ratio for packet classifier is even lower because
classification rules are often defined manually by the network ad-
ministrator. Hence, the designer can optimize the data structures
of the hardware TCP/IP lookup tables to maximize the lookup per-
formance. The system can afford to spend more time on each up-
date operation. Typically, necessary modifications to the data struc-
tures for an update request are determined by the management
software, and then corresponding memory-write commands are is-
sued to the hardware to make the changes.

The processing of an incoming NDN packet depends on packets
that have previously been received by the router. This has a great
impact on the design of the hardware lookup tables. The stateful
processing requirement of NDN leads to per-packet update to the
PIT and the CS tables. For example, an insertion to the PIT is re-
quired for each interest packet, and a deletion from the PIT is re-
quired for each data packet. Suppose the most recently received
data packets are saved in the cache store. Hence, a cache replace-
ment is required for each data packet. This means that there will
be 2 updates (1 insertion and 1 deletion) to the CS for each data
packet. To cope with the per-packet update requirement, the hard-
ware should be able to execute update and lookup operations to
the PIT/CS tables with the same efficiency. As a result, the lookup
table design techniques for TCP/IP packet processing may not be
applied to NDN. In particular, update operation should not involve
any precomputation by the software to determine how to modify
the data structures.

Data and interest packets are named. A name is made up of
multiple components represented in the type-length-value (TLV)
format [29]. A content (e.g. a video) may be divided into multi-
ple segments. Two segmenting conventions, namely the sequence-
based segmentation and the byte-offset segmentation, have been
proposed. For example, the name [com/youtube/funny-video-
8/2/1234 contains 5 components, and it refers to a specific seg-
ment of a video called funny-video-8 published by youtube.com.
The last two components specify the version number 2 and the
segment number 1234 of the given video. Matching of names
is component-based instead of character-based. For example, the
name [abc/de does not match the name /ab/cde.

According to the NDN proposal a data packet satisfies an in-
terest if the content name in the interest packet is a (component-
based) prefix of the content name in the data packet. The objec-
tive of the NDN proposal is to allow more flexibility for traffic ag-
gregation and discovery [30]. It is expected that vast majority of
interest packets will carry full names. Exact match is used to look
up an interest packet name in the PIT. To lookup a data packet
name in the PIT, the router is required to find potential match-
ing interest for every component-based prefix of the data name.

W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119 111

All-prefix match is much more time consuming than exact match.
Yuan and Crowley [4,5] argue that network traffic aggregation is
usually performed at edge router where the router may have large
number of lower speed interfaces. On the other hand, core router
has fewer interfaces but each interface has much higher line speed.
Packet processing speed instead of traffic aggregation is the major
concern in core router. They propose to use exact match for data
and interest packets lookup in PIT/CS at core router. The Cisco re-
search team [12] also opines that all-prefix match is not feasible
at scale and may actually create more problems. In this study, we
also adopt the exact match approach in the implementation of the
PIT.

Assume the payload of data packet is 1500 bytes (the maxi-
mum transmission unit allowed in Ethernet), and the size of inter-
est packet is between 128 and 256 bytes. The ratio of data packet
to interest packet is about 1 to 1. Hence, the average packet size
is about 900 to 1000 bytes. For a 10 Gbps interface the maximum
packet rate is about 1.38 MPPS. The average round-trip delay of
today’s Internet is about 80 ms. Hence, the number of entries in
the PIT for a 10 Gbps interface is about 55 K. For a medium scale
router such as the Cisco ASR 9000 with 36 x 10 Gbps interfaces,
the expected overall packet arrival rate is about 45 MPPS, and the
expected number of entries in the PIT is about 2 M. The size of
the PIT may be overestimated based on the aforementioned sim-
ple analysis. Carofiglio et al. [31] develop an analytical model of
PIT dynamics. Based on their model the size of the PIT is relatively
small in the average case, e.g. 10K to 200 K. In the worst case, the
size of the PIT is up to 20K entries for edge router, and up to 2M
entries for core router. Discussion on the size of the FIB will be
given in Section 3.1.

The PIT/CS tables are defined to have global context with re-
spect to the NDN router, i.e. the two tables are supposed to store
information regarding the packet arrival history for all interfaces of
the router. If a centralized lookup table is employed, its through-
put should be equal to the sum of the packet arrival rates of all
interfaces. It is very difficult, if not impossible, for software-based
implementation to meet the required throughput of a centralized
PIT. An alternative design is to employ a distributed lookup table,
where a table partition is allocated in each interface. Tradeoff be-
tween the centralized versus distributed implementations of the
PIT will be discussed in the next section.

3. Related work

In this section we shall give an overview of related work on
the design and implementation of the PIT. Other studies on the
implementations of CS, FIB, and NDN protocols will be given in
Section 3.1. A major issue in the implementation of PIT is the
placement of the PIT in the NDN router. Two different approaches
have been proposed, i.e. a centralized PIT serving all interfaces,
or a distributed PIT located in each interface. If a centralize PIT
is used, the required processing rate should be sufficient to sup-
port the sum of the data rates of all interfaces. The major difficulty
for hardware implementation of PIT is the per-packet update re-
quirement. To the best of our knowledge, we have not seen any
published hardware implementation of the PIT. Previous published
methods are software-based. However, a pure software implemen-
tation is unlikely to be able to meet the throughput requirement of
a centralized PIT for medium to large scale routers. Some software
implementations based on conventional d-left and linear-chained
hash tables [5,12] can only achieve packet processing rate of a few
MPPS.

An alternative approach is to employ a distributed PIT. If a dis-
tributed PIT is used, there can be 3 possible placements of the
PIT, namely in the ingress [6,7], egress [8], or third-part [9] inter-
faces. The drawback of placing the PIT in the ingress interface is

that when a data packet is received, the header of the data packet
needs to be broadcasted to all other interfaces to perform the PIT
lookup. Thus, the work load of each PIT partition is equal to the
sum of the data packet arrival rates on all other interfaces. Hence,
the workload of each PIT partition is about 50% of a centralized
PIT.

If the PIT is placed in the egress interface, then the FIB has to be
looked up before the PIT. In general the FIB lookup time is longer
than the PIT lookup time if the FIB is implemented in software. As
a result, the FIB will likely become the system bottleneck. Placing
the PIT in third-party interface will require another switch fabric to
switch the packet headers and lookup results among the interfaces,
which represents a very substantial hardware overhead. Moreover,
if the FIB is also implemented using the distributed approach [18],
then there may be contention for the switch fabric in switching
the requests/results for PIT and FIB lookups.

Bloom filter (BF) [32] is a popular approach used in the im-
plementation of NDN lookup tables. BF is a memory efficient data
structure for checking if an input key is a member of a data set.
However, the BF can only provide a binary yes/no reply, and it
is not able to return the identity of the matching key. Moreover,
the BF may generate false positive. To support delete operation,
the bit-vector is replaced by an array of counters. This variant of
BF is known as the counting Bloom filter (CBF). An implementa-
tion of a distributed PIT using BF called DiPIT is presented in [6,
7]. The PIT partitions are located at the ingress interfaces. When
a data packet is received, the packet header is broadcasted to all
other interfaces for looking up the PIT. If there is a hit in the BF
of interface i, the data packet is assumed to be solicited by an in-
terest packet previously received at interface i. The data packet will
then be forwarded to interface i. The DiPIT method is implemented
in software [6]. The overall packet processing rate is limited, in
particular each PIT partition is required to perform the lookup for
data packets received from all other interfaces. In principle this ap-
proach can be implemented in hardware. However, there can be
two potential drawbacks. First, to keep the false positive rate at a
reasonably low level, a larger number of hash functions (e.g. 5-
7) are necessary. If k hash functions are used, an update opera-
tion requires 2 k memory accesses (k memory reads to obtain the
current count values, and k memory writes to update the count
values). Second, the size of the counter in the CBF is restricted in
hardware implementation, e.g. 3-bit counters are used in [6]. It is
highly likely that the 3-bit counter may overflow. When counter
overflow occurs, the CBF fails and subsequent update operations
cannot be performed correctly. On the other hand, if counters with
more bits are used, the CBF may not be stored on-chip.

Another design of PIT using BF called MaPIT is presented in
[10]. BF does not identify the matching key. The MaPIT method re-
solves this problem by introducing an additional index called the
mapping array (MA). The BF bit-vector is divided into n segments,
and the MA is an n-bit vector. When a hash function map the in-
put key to segment i of the BF bit-vector, the ith bit of MA is set
to 1. The value of MA is used as the address to access the packet
store to retrieve the associated control information of the matching
key. The size of the BF bit-vector is set to 224, and n is equal to 30.
Twelve hash functions are used. The BF bit-vector and the MA are
supposed to be stored in on-chip memory, and the CBF (required
to support insertion and deletion to the PIT) and the packet store
are stored in off-chip memory. The authors of [10] evaluate their
method on a conventional Intel i3 CPU. Their evaluations mainly
concern about the on-chip memory usage, false positive rate and
the setup time of the data structures. Packet processing rate is not
reported in their paper. We have four major concerns regarding
the MaPIT method. First, the multi-level on-chip cache memory of
the CPU is controlled by the memory management unit based on
the built-in set-associative mapping and least recently used (LRU)

112 W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119

cache replacement policy. The programmer does not have direct
control of the cache memory allocation. Hence, it is not possible to
ensure that the full BF bit-vector is always stored in on-chip mem-
ory. Second, the packet store has 239 entries (since the MA has 30
bits), while the number of PIT entries is expected to be in the or-
der of million. Not all the packet store locations are addressable
since only k=12 bits out of n=30 bits in the MA can be equal to
1. Hence, the utilization of the packet store is pretty low, e.g. less
than 1%. Third, the size of a BF segment is 2'°. It is highly likely
that multiple distinct keys can have the same MA value. The au-
thors of [10] have not discussed how to resolve collisions in the
packet store. Fourth, the software needs to make 24 accesses to
the main memory in order to update the CBF. This will limit the
overall packet processing rate.

Yuan and Crowley present a software implementation of the PIT
using d-left hash table [5]. The PIT is composed of d hash tables (d
is equal to 2-4). Each hash table has B buckets, and each bucket
can hold E=8 entries. When a key is inserted to the PIT, all the d
hash tables are probed, and the key is inserted into the hash table
bucket with the least load. The system also has an overflow table
to store the items that cannot fit into the hash tables. To reduce
the memory requirements and also speed up the searching time,
a key is only represented by a 16-bit fingerprint in the hash ta-
ble. The overflow table may help to resolve bucket overflow, but
it will slow down the searching time. Another disadvantage of this
approach is that the probability of having duplicated fingerprints
(corresponding to distinct keys) mapped to the same hash bucket
is not negligible. Interest packets with the same name will not be
aggregated in their design.

3.1. Related work on the design of FIB, CS and protocol issues

The research team from Alcatel-Lucent [33] comments that
there are about 1 trillion webpages as for January 2001, and these
webpages are mapped to about 280 million globally unique and
routable hostnames. Hence, they opine that the size of the FIB is
potentially in the order of 100 million. They also present a dis-
tributed implementation of the FIB in hardware [18]. The FIB is
divided into multiple disjoint partitions, and one partition is allo-
cated on to each line card. The implementation of the lookup table
is based on the DLB-BF method of [34]. The FIB lookup rate is up
to 160 MPPS. The DLB-BF method requires an off-chip CBF main-
tained by the management software. Hence, this implementation
technique does not support per-packet update, and it is not appli-
cable to the implementation of PIT.

Some recent studies on name prefixes aggregation suggest that
the size of the FIB can be reduced significantly. Afanasyev et al.
propose a prefixes aggregation scheme based on the map-n-encap
approach [35]. When a client wants to request information based
on a provider independent name, it will first look up a mapping
system (e.g. an extension of the domain name system) to find
the corresponding provider-aggregatable address (i.e. the ISP prefix).
The ISP prefix is stored as an additional field in the packet header,
called the forwarding alias. The FIB in the NDN router will have
two parts, the name prefixes for intra-provider routing and the for-
warding alias for inter-provider routing. Major ISPs can have mul-
tiple tens of millions of subscribers. Hence, the number of intra-
provider name prefixes in the FIB may be in the order of million.
Adrichem and Kuipers [36] propose a similar name prefixes aggre-
gation approach based on autonomous system rather than ISP.

The research team from Tsinghua University proposes a soft-
ware implementation of the FIB [13-15]. They exploit the paral-
lel processing power of GPU to speed up the lookup operation,
and can achieve a lookup rate of about 60 MPPS for a name ta-
ble with 10 M name prefixes. The packet processing rate is quite
high. However, the GPU approach may not be suitable for the im-

plementation of the PIT/CS table because of the per packet update
requirement. Whenever the table is updated, changes to the data
structures are to be determined by conventional CPU. The revised
data structures are then uploaded to the GPU memory. The lookup
operations are suspended during the update process.

Another research team from Beijing University of Posts and
Telecommunications proposes to use a hybrid trie-based and
Bloom-filter approach to perform FIB lookup [16,17]. The packet
lookup rate is only up to 1 MPPS when implemented in software.

There have been some significant results on the design of the
cache store in NDN router. High volume of network traffic passes
through a core router per second. In order for the cache store to be
effective, its size must be sufficiently big, e.g. in the order of 100
GB. The cost of implementing a cache store of that size in RAM is
not affordable. Also the corresponding size of the CS table required
by the NDN router for packet processing is not manageable. Rossi
et al. [37,38] propose a hierarchical 2-level cache architecture. The
L1 cache with 2-10 GB is implemented using SRAM/DRAM, and
the L2 cache with larger capacity is implemented using solid state
disk (SSD). L2 has sufficient capacity to hold half a million full
video files. The system may pre-fetch data packets from L2 to L1
on-demand based on the recently received interest packets.

Conventional cache management policies include the least re-
cently used, least frequently used, and the first-in-first-out poli-
cies. Thomas et al. [39] propose another cache management policy
for NDN, called the object-oriented caching. If a video is popular,
caching the video in NDN routers may improve the network per-
formance. A video is divided into thousands of segments. Caching
some random segments of the video in a router is not useful. It is
highly unlikely that multiple clients are requesting the same seg-
ment within a time window of 0.1 s. Their caching policy requires
that if a content is to be cached, the cache store will always hold
the first k segments of the given content, where k is a system con-
trol parameter.

The aforementioned studies consider the PIT, CS or the FIB in-
dependently. Some recent studies attempt to implement a proto-
type NDN router. The Tsinghua research group presents a software
implementation of an integrated FIB, CS and PIT using CBF called
BFAST [11]. Suppose the content name has L components. Their
method will iteratively search the lookup table with i components,
where i starts from L and is decremented iteratively until a match
is found. Their method running on an Intel Xeon E5645 CPU can
attain 36.41 million lookup per second. For the insert and delete
operations, they can only achieve 1.56 and 3.01 million updates per
second, respectively. Because of the per packet update requirement
of the PIT/CS, the overall packet processing rate is limited by the
update rate.

Recently, the research team from Cisco presents a prototype de-
sign of a software NDN router [12]. Instead of using a simple linear
search strategy as in [11], the Cisco team uses a 2-stage search-
ing heuristic to reduce the lookup time of the FIB. The search
starts from name prefixes with M components (where M is a de-
sign parameter), and either continues to shorter prefixes or restarts
from a longer prefix if needed. Their design is based on the Cisco
ASR 9000 software router with four 10 Gbps interfaces. Their im-
plementation with 4 sets of (dispatcher+2 packet processes) can
achieve a packet processing rate of 4.5 MPPS.

Some other researches address the issues on forwarding strate-
gies, flow control and communication protocols. The research
group from UCLA and University of Arizona investigate the adap-
tive forwarding strategies [40]. The router maintains the status of
each link, and uses this information to make decision on how to
forward or retransmit interest packets. They also propose to intro-
duce the negative ACK if a router does not know how to forward
an interest packet. A research group from Alcatel-Lucent investi-
gates the flow control of NDN traffics [41]. They present a window-

W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119 113

Supervisor Engine

FPGA PIT Data/Control Bus
| _(LdT‘ A A >
| | Memory
NPU (PIT, FIB)

Interface/Line card

Fabric I/F

Interface/Line card

Fabric I/F

Fabric arbitor

l€
<

\ 4
A

JISV

f

JISV

A
\ 4

Fabric switch

A 4

<

Fig. 1. Block diagram of the NDN router.

based flow control mechanism similar to the TCP flow control. k1)

W : equal to 1 —e 2~ * where N=264. Suppose the expected num-
They envision that a steady stream of interest and data packets of ber of unique names stored in the PIT of a NDN router is about

0.5 M. The probability of having 2 or more distinct names mapped
to the same nid is about 7 x 10~9. Together with the 32-bit seg-
ment number, the chance of having 2 distinct interest packets shar-
ing an identical (nid, sn) pair in the PIT is negligible. Some previous
studies use up to 32-bit hash values, e.g. [5, 12]. When the size of
the data set is in the order of million, collision is not avoidable if
32-bit hash values are used.

When the router receives an interest packet and has a PIT-miss,
the router needs to find out how to forward the interest packet
by looking up the FIB. In this study the FIB is assumed to be im-
plemented in software. We shall take advantage of the locality of
reference property in the traffic stream to reduce the number of
FIB lookup. A window-based flow control mechanism for NDN has
been presented in [41]. The user sends out a sequence of interest
packets for a given content and waits for the arrival of the data
packets. Receiving one or more data packets allows the user to
send out new interest packets. The flow control mechanism reg-
ulates the stream of interest packets that pass through a NDN
router. In the design of the hardware accelerator, we incorporate
a nid table (nidT) to store all the distinct nid present in the PIT. If
the router receives an interest packet where the nid is the same
as some other interest packet currently stored in the PIT, then the
router needs not look up the FIB to determine how to do the for-
warding. Let L be the average number of interest packets of a flow
that can be captured by the nidT, the number of FIB lookup can be
reduced by a factor of L.

The hardware accelerator implements a mirrored and simplified
copy of the PIT table and the nidT. The hardware performs the re-
quired lookup/update operations to the PIT and generates replies
to the NPU. The NPU will then carry out the associated actions ac-
cordingly, e.g. forward or discard the packet, update the control in-
formation, look up the FIB if required, and etc. Possible extension
to include the CS table will be discussed in Section 5. We shall first
explain the interactions between the software control unit and the
hardware accelerator. The implementation of the hardware lookup
table will be discussed in Section 4.1.

The software and hardware maintain its own copy of the PIT.
The hardware table contains only the essential data fields to sup-
port the search and update operations, while the software table
contains other control information that are required for the han-
dling of the data/interest packets. Data fields of the software and
hardware tables are shown in Fig. 2. The hardware accelerator au-

the same content will be passing through a NDN router. Aub et al.
[42] study interest packet retransmission in lossy communication
links and its impact on network performance.

4. Proposed method

We adopt a hardware and software co-design approach. The
role of the hardware accelerator is to relieve the workload of the
software on PIT lookup and management. The software control
unit is mainly responsible for coordinating the operations of the
switch fabric, FIB, cache store (if present), and the high level pro-
tocols. In most of the times, the lookup operation of an interest
packet is followed by an insert operation, and the lookup operation
of a data packet is followed by a delete operation. In our design,
the hardware will integrate the lookup and the associated update
operation into one command. By doing so, the processing time as
well as the I/O communications between the software and hard-
ware can be reduced.

The block diagram of the NDN router with the proposed hard-
ware accelerator is depicted in Fig. 1. Packet headers are collected
by individual interfaces and sent to the network processor (NPU)
via a dedicated bus. The software control unit running on the NPU
will then dispatch the lookup/update requests to the hardware ac-
celerator implemented on a FPGA.

In this study, we divide the packet name into two logical parts,
the content name (including the version number if applicable),
and the segment number (sn). A 32-bit sn is assumed. Thanks
to the TLV representation, the segment number can be easily ex-
tracted from the packet name. If the packet name does not con-
tain a segment number, then our system assumes a default sn
value of 2321 (32 bits of 1). The default sn value is to avoid po-
tential confusion with other interest packet that is requesting the
first segment of a file with sn=0. Lookup operation on the PIT
is based on the ordered pair (content name, segment number).
The content name can have variable length. It is much more ex-
pensive to perform matching of variable-length entities in hard-
ware. To facilitate more efficient implementation of the PIT, the
variable-length name is converted to a fixed-length 64-bit name
ID (nid) using some standard hash functions, e.g. CityHash [43] or
SipHash [44]. By doing so, the lookup/update operation on the PIT
is much simplified. If k unique names are uniformly mapped to
a 64-bit number space, the collision probability is approximately

114 W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119

Table Data fields
PIT N nid |sn nidT _addr face list other control info
H/W |next nid |sn - - -
nidT S/W |- nid |count |nextHop status (valid, pending)
H/W |next nid |--- - - -
CmdT |S/IW |cmdCode |nid |sn PIT hit & PIT addr|nidT hit & nidT addr |packet address
Fig. 2. Data fields of the software and hardware lookup tables.
Command Parameter Action & reply
LI tag, nid, sn Action: Lookup and update PIT; lookup and update nid7 if required
(lookup interest) PIT_hit: reply PIT_address
PIT_miss: insert (nid, sn) into PIT, reply PIT_address
lookup nidT with nid
nidT _hit: reply nidT_address
nidT_miss: insert (nid) into nidT, reply nidT_address
Reply: tag, cmdCode, PIT _hit, PIT_address, nidT_hit, nidT_address
LD tag, nid, sn Action: Lookup and update PIT
(lookup data) PIT_hit: reply PIT_address, delete the entry from PIT
PIT_miss: reply miss
Reply: tag, cmdCode, PIT_hit, PIT_address
CLR tag, nid, sn Action: Delete (nid, sn) from PIT and delete (nid) from nidT
(clear entry)
Reply (ACK): tag, cmdCode
IN tag, nid Action: Insert (nid) to nidT
(insert to nidT)
Reply: tag, cmdCode, nidT_address
RM tag, nid Action: Remove (nid) from nidT
(remove from
nidT) Reply (ACK): tag, cmdCode

Fig. 3. Lookup and update commands.

tomates the management of the PIT and nidT. It may take multiple
clock cycles to carry out a command, and the software can issue
a new command to the hardware before the results for the previ-
ously issued commands have been received. The system identifies
each command/reply by a tag. The software maintains a pool of
free tags, and the commands that are in progress are stored in the
command table (CmdT). In this study, the size of the command ta-
ble is set to 512, hence, a command can be identified by a 9-bit
tag.

The list of commands that the software control unit may issue
to the hardware accelerator is shown in Fig. 3. The packet process-
ing procedure is as follows. When the software control unit re-
ceives a data packet, it issues a lookup data (LD) command to the
hardware. The software control unit may then proceeds to do other
tasks. The hardware looks up the given (nid, sn) pair in the hard-
ware table. In case of a PIT-hit, the address at which the given (nid,
sn) is found is returned to the software control unit. Moreover, the
hardware will also delete the given entry from the hardware PIT
automatically. When the software control unit receives the reply
from the hardware, it carries out the appropriate actions. For PIT-
hit the software can find out the detailed control information (e.g.
the face list) from the software PIT at the given address, and for-
ward the data packet to the corresponding output interfaces. The
count value in the corresponding nidT entry is decremented by 1.
The entry in the software PIT is released, and can be used to store
other interest packet. In case of PIT-miss, the data packet is dis-
carded. The software control unit is relieved from the burden of
doing PIT lookup and management.

Similarly, when the software control unit receives an interest
packet, it issues a lookup interest (LI) command to the hardware.
The hardware will look up the given (nid, sn) pair in the hardware
table. In case of PIT-hit, the address at which the given (nid, sn) is
found is returned to the software control unit. In case of PIT-miss,

the hardware will perform two related tasks automatically. First, it
will insert the given (nid, sn) to the hardware PIT. Second, it will
issue an internal command to look up (and insert) the given nid in
nidT. The results returned to the software control unit include the
PIT address and the nidT address, if applicable. When the software
control unit receives the reply from the hardware, it will carry out
the required action accordingly. In case of a PIT-hit, the interface
at which the interest packet is received is added to the face list.
In case of a PIT-miss, the given (nid, sn) pair will be stored in the
software PIT at the address returned by the hardware. If nidT_hit
is true and the nidT entry is valid, then the interest packet will be
forwarded according to the nextHop stored in the software nidT.
The count value of the corresponding nidT entry is incremented
by 1. If the status of the nidT entry is pending (another software
thread is in the process of looking up the FIB for the given nid),
the software thread for the processing of the given interest packet
is blocked and waits for the status to change to either valid or in-
valid. If nidT_hit is false, the software needs to look up the FIB and
the status of the corresponding nidT entry is set to pending. When
the FIB lookup result is available, the status and nextHop fields in
the nidT entry are updated and other software threads that are
waiting on the FIB lookup result are notified. If we have a FIB-hit,
the interest packet is forwarded. If we have a FIB-miss, the router
does not know how to forward the interest packet. The interest
packet is dropped and the router may return a NACK to the up-
stream router. It will also need to remove the PIT entry and the
nidT entry in the hardware table by issuing a CLR command to the
hardware accelerator.

The commands RM (remove) and IN (insert) are used to manage
the nidT table, if required. In case of a LD command with PIT-hit,
the given entry (nid, sn) in the hardware PIT will be deleted auto-
matically. The NPU can find out the associated nid entry in the nidT
from the software PIT. When the entry (nid, sn) is deleted from PIT,

W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119 115

Lookup Key [next| 0
request | Command Control logic
queue
z Data
5 0 area
z
| R
< Key [next|n-1
[0
1 [[T]n
S Ptr
area |-
m-1 n+m/4-1
On-chip Ext.
BRAM SRAM

Fig. 4. Block diagram of the hardware lookup table.

the count value of the corresponding nid entry in nidT is reduced
by 1. When the count value is reduced to zero, it means that there
is no pending interest packet with the given nid in the PIT. The
corresponding nid entry in the nidT is said to have expired, and
may be removed. The expired nid is added to the pending removal
queue. When the system needs to balance the size of the nidT, the
software retrieves the nid to be removed from the pending removal
queue, and submits a RM command to the hardware accelerator.

The IN command may be used in some rare occasion. The soft-
ware is implemented using multi-threading, and the processing of
each packet is done by a dedicated thread. It is possible that a LI
command and a RM command with the same nid are submitted
to the hardware by different software threads at more or less the
same time. The software will have marked the nidT entry as in-
valid when a RM command is submitted to the hardware. Suppose
the hardware completes the LI command before the RM command.
Hence, the software will find out that the nidT address returned
by the hardware is invalid. It will need to look up the FIB for the
interest packet concerned, and then performs an explicit insertion
to the hardware nidT table using the IN command.

4.1. Implementation of the hardware tables

The organization of the PIT and nidT are similar. There can be
up to 8.5 MB of on-chip memory in state-of-the-art FPGA. Since the
size of PIT is in the order of million, it is not possible to store the
full lookup table in the on-chip block RAM (BRAM) of the FPGA.
In our design, we make use of the limited on-chip BRAM to im-
plement a BF for the lookup table, and store the full lookup table
in external SRAM. The purpose of implementing the BF is to al-
low the system to determine in the shortest possible time that if
the input key is not a member of the data set, and the system can
take appropriate action accordingly. In our design, the system is
not required to maintain a CBF in order to perform updates to the
BE.

Block diagram of the hardware table is depicted in Fig. 4. The
external SRAM array is divided into the data area and the pointer
area. One memory word can hold a (key, next) pair in the data area,
or 4 pointers in the pointer area. Up to n keys can be stored in
the external table. A key (nid, sn) is mapped to a home bucket
b, where b=H(nid, sn), and H is the hash function. Implementa-
tion of the hash function is based on the family of H3 hash func-
tions of [45]. Suppose the key has i bits={x;.{, ..., X1, Xg}. Let
Q denote a ixj Boolean matrix, and g, denote the kth row of
Q. The hash function is defined as H(key, Q) =Xxo - Qo ® X1 -q1 ®

. ®X;_1-qi_1. The operator ‘ - ’ represents the Boolean AND op-
erator, and @ represents the XOR (exclusive-OR) operator. The ma-
trix Q is generated randomly off-line.

For the PIT table, the key contains 96 bits. It is rather expensive
to perform the exclusive-OR operation of 96 bit-vectors. Hence, we
shall first compress the 96 input bits (nid, sn) to 32 bits. The com-
pression is done as follows. A random permutation of the 96 bits
is pre-computed off-line, and the permutation is implemented as
a hardwired circuit in the FPGA. Each block of 3 bits of the per-
muted key is fed to a 3-input XOR gate to produce 1 output bit.
For the nidT table, the size of the key is 64 bits. We shall use the
same approach to compress the 64-bit key to 32 bits.

Output of the hash function is within the range of 0 to m—1
(m=2/). Keys mapped to the same bucket are organized in a linked
list. The pointer area is used to store the reference addresses of the
linked lists (i.e. the physical address of the first key in each linked
list). Vacant slots in the data area are chained up to form a free
list, and the address of the first vacant slot in the free list is stored
in an internal register, i.e. the freeList register.

In a LD command, the hardware will first check the BF-vector.
If BF[b]=0, the key is not present and the hardware will return
a PIT-miss. If BF[b]=1, the hardware will traverse the list of keys
that are mapped to bucket b. The base address of the pointer area
is stored in an internal register r. Each access to the external SRAM
will read/write a 128-bit word. The reference address of the linked
list for bucket b is the (b mod 4)-th pointer at location r+b/4. The
hardware traverses the linked list concerned iteratively to search
for the input key. If the input key is found at address x, the hard-
ware returns a PIT-hit and will also delete the data item from
the linked list. If the linked list becomes empty after the dele-
tion, BF[b] is reset to O. If the reference address of the linked list
is modified (i.e. deleting the first node in the linked list), the hard-
ware will also update the reference address of the linked list in the
pointer area.

Fig. 5 shows the steps for the LD and LI commands for cases
that require the minimum number of cycles. The minimum num-
ber of clock cycles for a LD command is 2 and 5 for PIT-miss and
PIT-hit, respectively. The minimum cycle time for a PIT-miss corre-
sponds to the case where the BF-vector bit is zero. The hardware
uses the 1st cycle to compute the hash function. The on-chip BF-
vector and the pointer area of the external SRAM are accessed in
parallel in the 2nd cycle. Since the BF-vector bit is zero, no further
processing is required. The minimum cycle time for a PIT-hit cor-
responds to the case where the key is stored in the 1st node of
the linked list. After checking the BF-vector in cycle 2, the hard-
ware read the stored key in the 3rd cycle and finds a match. In the
4th cycle the hardware updates the reference address of the given
linked list and the on-chip BF-vector, if required. In the 5th cycle
the hardware moves the storage slot to the free list.

In a LI command, if the key is found at address x, the hardware
returns a PIT-hit and the value of x. If the key is not found, then
the key will be inserted at the end of the linked list automatically.
The first empty slot will be allocated to store the inserted key. Af-
ter the insertion, the freeList register should be updated to refer-
ence the next free slot. Hence, the hardware is required to bring in
the first slot of the free list in cycle 1 in order to find out the ad-
dress of the next free slot. Suppose the key is inserted at address y.
The hardware will record a PIT-miss and the address y in the reply
record for the given tag. The reply record will not be returned im-
mediately. The hardware will issue a lookup request (search-insert
command) to the nidT to look for the given nid. The search-insert
operation on the nidT is similar to that of the PIT. The results (nidT-
hit or hidT-miss, and the associated address) will be stored in the
reply record for the given command tag. The reply is then ready
for return to the software control unit.

The insert and delete operations on the PIT and nidT are similar
to that of the LD/LI commands, and we do not repeat the descrip-
tion here. From Fig. 5 we can see that in cycle T1 the hardware
computes the hash function and accesses the data area of the ex-

116 W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119
Command Outcome Clock cycle
T1 T2 T3 T4 T5
LD PIT-hit compute check BF read data area | update pointer | update data
(1" node of | H(nid, sn) (BF =1), & compare area, area (move
linked list) read pointer (match) update BF if | slot to free
area required list),
update
freeList reg
PIT-miss compute check BF - --- -
(BF=0) H(nid, sn) (BF =0),
read pointer
area
LI PIT-hit compute check BF read data area | --- -
(1" node of | H(nid, sn), (BF = 1), & compare
linked list) [read data area | read pointer (match)
(get address of | area
next free node)
PIT-miss compute check BF update pointer | update data -
(BF=0) H(nid, sn), (BF =0), area, area
read data area | read pointer update BF, (insert item
(get address of | area issuelookup | into PIT),
next free node) request to update freeList
nidT reg

Fig. 5. Steps for the LD and LI commands requiring minimum number of cycles.

ternal memory array to retrieve the address of the second node in
the free list. We shall introduce two refinements to the hardware
implementation to reduce the cycle time of LD/LI command. The
commands that operate on a table are lined up in the respective
FIFO queue. The front item of the queue is available at the out-
put interface of the hardware FIFO. We introduce one more regis-
ter, the currentCmd register, in the hardware. By moving the cur-
rent command to the currentCmd register we can have access to
the next command in the queue. This allows the hardware to pre-
compute the hash function of the next command while the current
command is in progress.

For the LD command with PIT-hit, one access to the external
memory (cycle T5) is required when the PIT entry is deleted and
the slot is added to the free list. For the LI command with PIT-
miss, when the input key is added to the table the freeList register
needs to be updated. To do this, the hardware needs to perform
a memory read in cycle T1 to obtain the address of the next free
slot. In general, the LD and LI commands are interleaved. We can
reduce the accesses to the external memory by introducing an in-
ternal buffer (FIFO) to store addresses of the PIT slots that have just
been released. Suppose the size of the FIFO is 32 entries. When a
PIT entry is deleted in a LD command, the address of the deleted
entry is inserted into the FIFO if the queue is not full. If the queue
is full, then the hardware will access the external memory and up-
dates the freeList register as shown in cycle T5 of Fig. 5. In a LI
command, if the FIFO is not empty then the hardware can get the
address of a free slot from the FIFO. There is no need to access
the external memory in cycle T1, and no need to update freeList
register in cycle T4 when the input key is inserted to the PIT. By
incorporating these 2 refinements, the time required for a LI com-
mand can be reduced by 1 clock cycle, and the time required for
LD command can be reduced by up to 2 clock cycles.

For proof-of-concept, the proposed hardware architecture is im-
plemented on a Xilinx Virtex-7 FPGA (model xc7v2000tflg1925-2).
The size of the Bloom filter of the PIT is set to 2M entries. The
load factor of the Bloom filter is expected to be about 50%. The
size of the data area of the external table is set to 1.25 M. The size
of the Bloom filter of the nidT is set to 512K, and the external ta-
ble size is set to 320 K. The hardware contains two sets of PIT/nidT
tables with a total capacity of up to 2.5M PIT entries and 640 K
distinct nid. When the hardware receives a command, it computes

the parity of the rightmost 16 bits of the input nid. The parity bit
is used to select one of the 2 sets of tables. The reply from the
hardware will also include the parity bit. The external table can be
implemented using the 133 MHz Cypress flow-through SRAM. The
resource usage of the FPGA is summarized in Fig. 6. The FPGA can
operate at 100 MHz after place and route. A higher processing rate
is possible of the hardware is implemented with ASIC.

4.2. Performance evaluation and comparison

The packet processing rate of the hardware is studied via com-
puter simulation. Without loss of generality the simulation pro-
gram only simulates the performance of 1 set of PIT/nidT tables.
The main purpose of the simulation is to find out the maximum
packet processing rate of the hardware. The input command queue
of the hardware is maintained to have at least 2 entries throughout
the simulation. Unlike simulation studies that aim at evaluating
the queueing discipline, statistical property of the packet arrival
rate is not a major concern in our study. Generation of the inter-
est packets is as follows. We assume there are 250 K distinct flows,
and the lengths of the flows are generated using a Guassian ran-
dom number generator. The mean p varies from 4 to 20, and the
standard deviation o is equal to 0.25 . Sequence based segment-
ing is assumed. The starting value of the segment number of each
flow is randomly generated within the range from 0 to 230, The
250K flows are stored in the interest queue Iy. To avoid generating
interest packets of a flow having periodic arrival pattern, the queue
is programmed to have 4 exits, namely the front of the queue and
the three quartiles Q; to Qs. The probability for selecting the flow
at the front, and the 3 quartiles Qq, Q,, and Q3 are equal to 60%,
20%, 10%, and 10%, respectively. An interest packet for the selected
flow is generated, and the remaining flow length is decremented
by 1. If the remaining flow length is greater than zero after the
decrement, the flow is moved to the rear of the queue. When the
selected flow is expired (i.e. its flow length becomes zero), it is re-
moved from the queue. A new flow is generated and is inserted at
the rear of the I.

Generation of data packets is event driven, i.e. based on previ-
ously generated interest packets. Flows with pending data packets
are maintained in another queue, the data queue Dy. The manage-
ment of the Dy is similar to that of the Iy. The simulator generates

W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119 117

Hardware Resource Used Available Utilization
Slice 5676 305400 1.86%
Slice LUTs 13127 1221600 1.07%
LUT as Logic 9047 1221600 0.74%
LUT as Memory 4080 344800 1.81%
Slice Register 7511 2443200 0.31%
LUT Flip Flop Pairs 15791 1221600 1.29%
Block RAM (36 Kbit) 172 1292 13.31%
10B 1182 1200 98.50%

Fig. 6. Summary of hardware resource utilization.

31 T T T T T T
®
a 30.5+ .
2
Qo 30 =
3}
o
o 295 -
[
2
o 29+ -
[&]
2
o 285+ .
@ 7
T 5 x —C=1M
S i -- C=800K
---C=600K
275 1 1 I ¥ 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22

Average Sequence Length

Fig. 7. Packet processing rate for 1 set of PIT/nidT tables.

C interest packets from the flows in I, in the initialization phase.
After the initialization phase, the simulator will choose to select a
flow from either the Iy or the Dy with equal probability. Hence,
the parameter C represents the expected number of entries in the
PIT. The simulator will then process a stream of C mixed interest
and data packets before taking measurements. The throughput is
measured for a period where 10 M packets are processed. Ten sim-
ulation runs are conducted for each set of simulation parameters.

In our simulation, all interest packets lookup will have PIT-miss,
and all data packets lookup will have PIT-hit. This represents a
somewhat worst case scenario for the hardware. When the last
data packet of a flow is received, the corresponding nid in the nidT
is also expired. The simulator will also simulate the software man-
agement functionality. The given nid is inserted into the pending
removal queue. The size of the nidT is kept at 256 K. To balance the
size of the nidT, the front element of the pending removal queue
is retrieved and a RM command is issued to the hardware.

Fig. 7 shows the packet processing rate of the hardware for
different average flow lengths and PIT populations. One can see
that the packet processing rate is improved when the PIT pop-
ulation is lower. With lower PIT population (i.e. the Bloom fil-
ter has a smaller load factor), the average length of the linked
lists in the external table is shorter and the throughput of the
hardware can be improved. When the average flow length is in-
creased, the number of RM commands is reduced. Hence, the
workload of the hardware is also reduced. Fig. 8 shows the re-
quired FIB lookup rate for different average flow lengths. The FIB
lookup rate can be reduced to less than 2 MPPS. The through-
put of 1 set of PIT/nidT tables is about 28-30 MPPS. Two sets of
PIT/nidT tables can be implemented on a FPGA. Hence, the overall
packet processing rate of the hardware accelerator can be up to 60
MPPS.

To the best of our knowledge, we have not seen any publi-
cation on hardware implementation of the PIT. A comparison of
the packet processing rate with some previously published soft-
ware implementations of PIT is given in Fig. 9. DiPIT [6] and MaPIT
[10] are not included in the comparison because packet processing
rate of these 2 methods is not available in the original papers.

Only 1 hash function is used in the implementation of the hard-
ware lookup table. The false positive rate of the Bloom filter can
be reduced by using more hash functions. We have compared two
different designs that use 1 hash function and 2 hash functions,
respectively. It is found that if 2 hash functions are used, we have
more flexibility in choosing to store a key in 1 of 2 possible linked
lists, e.g. the linked list with shorter length. The lookup perfor-
mance can be slightly improved. However, the update performance
is degraded. More detailed evaluations via simulation indicate that
the implementation using 1 hash function actually offers better
overall performance.

5. Concluding remarks and future work

A hardware implementation of the PIT is presented. A major is-
sue that needs to be resolved is the per-packet update requirement
in the lookup table. The hardware will take care of the lookup and
update operations autonomously. In our design, the lookup and the
associated update operations are integrated. The software is re-
lieved from the burden of doing the table lookup and update. For
proof-of-concept, the proposed method is implemented on a FPGA,
and the packet processing rate is about 56 to 60 MPPS. In our de-
sign, we incorporate a nid table (nidT) to store all the distinct nid
present in the PIT. By doing so, if the router receives an interest
packet where the nid is the same as some other interest packet
currently stored in the PIT, then the router needs not look up the

118 W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119

4 T T T T T T T T T
—C=1M
— 3.5}
(2}
o
3L
=
£ o2sf
o
S 2
=
e
~ 15}
@
L
1k
0_5 L | | 1 1 1 1 | |
2 4 6 8 10 12 14 16 18 20 22
Average Sequence Length
Fig. 8. FIB lookup rate for 1 set of PIT/nidT tables.
Method Approach Table size Implementation | Packet processing rate
platform
Yuan [5] Fingerprint-based hash | PIT: 64K to 2M Intel Xeon Lookup/update
tables, with 16-bit E5540 latency: 1.2 ps (= 0.83
fingerprints. MPPS)
Dai [8] Name component encoding | PIT: 1.5M Intel Xeon Lookup: 1.4 MPPS
(NCE) trie E5520 Insert: 0.9 MPPS

Delete: 0.9 MPPS

Varvello [9] Open-addressed d-left hash

PIT: 62K to 1M

Cavium Octeon | 3.4 MPPS overall

table

table. Plus CN5650
Dai [11] Bloom filter with auxiliary | Combined PIT, | Intel Xeon Lookup: 36.4 MPPS
(BFAST) CBF and unified index CS & FIB: 3M to | ES5645 Insert: 1.56 MPPS

10M Delete: 2.86 MPPS

So [12] Linear chaining hash table | PIT: IM to 2M, Integrated 4.5 MPPS overall

and 2-stage FIB search | FIB: IM to 64M Service Module,

strategy Cisco ASR

9000

Proposed On-chip Bloom filter plus | PIT: 2M FPGA with ext. | 56 to 60 MPPS overall
method oft-chip linear chained hash SRAM

Fig. 9. Comparison of packet processing rate with other methods.

FIB to determine how to do the forwarding. Hence, a software im-
plementation of the FIB may offer sufficient throughput. We shall,
however, investigate possible hardware implementation of the FIB
in our future work.

Fixed-length nid, instead of the variable-length content name, is
commonly used by the research community in the implementation
of the PIT and CS tables. Computation of the nid from the content
name is performed repeatedly when the packet is forwarded from
one router to the next router. Hence, it is desirable to standardize
the hash function for the computation of the nid, and also include
the nid in the packet header such that the computation workload
of the NDN router can be largely reduced.

In our discussion we have only considered the PIT. It is pos-
sible to integrate the CS table with the proposed PIT with minor
refinements. One more control bit is added to the software PIT/CS
table to indicate if the entry corresponds to a pending interest or a
cached data. When a data packet is cached, the table entry needs
not be removed and the control flag in the PIT/CS entry is updated.
Accordingly, one control bit is added to the hardware PIT/CS ta-
ble. Suppose the most recent data packets are cached, then the LD
command with PIT-hit will simply update the control bit instead
of removing the entry from the PIT/CS. If a LD command finds a
matching PIT/CS entry which corresponds to a cached data packet,
then the hardware will generate a PIT-miss instead of a hit. As a

result, the software will simply discard the data packet. An advan-
tage of integrating PIT with CS is that the number of update oper-
ation for each data packet can be reduced from 3 to 1. If PIT and
CS are implemented as two independent tables, the processing of a
data packet may require 3 update operations (1 deletion from PIT,
1 deletion and 1 insertion to CS due to cache replacement). By in-
tegrating PIT with CS, the deletion from PIT and insertion to CS is
effectively eliminated. The system only needs to update the infor-
mation stored in the given table entry without modifying the data
structure. One minor modification to the hardware implementation
is required. One more command is required to carry out explicit
deletion of the corresponding PIT/CS entry when a data packet is
removed from the cache store. While the organization of the hard-
ware table remains more or less unchanged, the size of the ta-
ble needs to be adjusted according to the capacity of the cache
store. We shall further investigate how to integrate our method
with the 2-level hierarchical cache store architecture proposed in
[37].

Adaptive forwarding strategies [40] can be incorporated with a
simple refinement to the proposed method. In addition to the nex-
tHop value, the address of the matching FIB entry can be stored
in the software nidT table. Knowing the matching FIB entry, the
router can carry out the adaptive forwarding strategies as pre-
sented in [40].

W. Yu, D. Pao/Computer Communications 91-92 (2016) 109-119 119

In this study, we use exact match instead of all-prefix match to
look up data packet names in the PIT. How to support non-exact
match and the associated per-packet update at high speed requires
further research. The prefix match requirement also has great im-
pacts on the management of the CS table. According to the NDN
proposal, an interest name is matched against prefixes of the data
names in the cache store. To facilitate fast CS table lookup using
hashing, a data packet name with L components needs to be ex-
panded to L discrete names with 1 to L components, respectively.
The L discrete names for the given data packet are stored in the
hash table. When a data packet is added to or removed from the
cache, we need to perform L insert or delete operations to the CS
table. The size of the CS table is increased, and the CS table will be
overwhelmed by the large number of update operations. The vast
majority of interest packets carry full names, and only a very small
percentage of interest packets may carry partial names. Hence, it is
worthwhile to investigate if name discovery can be resolved by the
application layer such that NDN router needs not perform prefix
match of names.

Acknowledgments

This work was supported by a grant from the Research Grant
Council of the HKSAR, China (Project No. CityU 120513). The au-
thors are grateful to the reviewers for their support and valuable
comments.

References

[1] J.E Gantz et al., The expanding digital universe: a forecast of worldwide in-
formation growth through 2010, IDC White Paper, 2007. http://www.emc.com/
collateral/analyst-reports/expanding-digital-idc-white-paper.pdf.

[2] L. Zhang, et al., Named data networking (NDN) project, Technical Report NDN-
0001, 2010. http://named-data.net/publications/techreports/.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Brigs, R. Braynard, Net-
working named content, Commun. ACM 55 (1) (2012) 117-124.

[4] H. Yuan, T. Song, P. Crowley, Scalable NDN forwarding: concepts, issues and
principles, IEEE ICCCN, 2012.

[5] H. Yuan, P. Crowley, Scalable pending interest table design: from principles to
practice, in: IEEE INFOCOM, 2014, pp. 2049-2057.

[6] W. You, B. Mathieu, P. Truong,].-F. Peltier, G. Simon, DiPIT: a distributed
Bloom-filter based PIT table for CCN nodes, IEEE ICCCN, 2012.

[7] W. You, B. Mathieu, P. Truong,].-F. Peltier, G. Simon, Realistic storage of pend-
ing requests in content-centric network routers, IEEE International Conference
on Communications in China, 2012.

[8] H. Dai, B. Liu, Y. Chen, Y. Wang, On pending interest table in named data net-
working, in: IEEE/ACM ANCS, 2012, pp. 211-222.

[9] M. Varvello, D. Perino, L. Linguaglossa, On the design and implementation
of a wire-speed pending interest table, in: IEEE INFOCOM WKSHPS, 2013,
pp. 369-374.

[10] Z. Li, K. Liu, Y. Zhao, Y. Ma, MaPIT: an enhanced pending interest table for NDN
with mapping Bloom filter, [EEE Commun. Lett. 18 (11) (2014) 1915-1918.

[11] H. Dai, J. Lu, Y. Wang, B. Liu, BFAST: unified and scalable index for NDN for-
warding architecture, in: IEEE INFOCOM, 2015, pp. 2290-2298.

[12] W. So, A. Narayanan, D. Oran, Named data networking on a router: fast
and DoS-resistant forwarding with hash tables, in: IEEEJ/ACM ANCS, 2013,
pp. 215-225.

[13] Y. Wang, K. He, H. Dai, W. Meng,]. Jiang, B. Liu, Scalable name lookup in NDN
using effective name component encoding, in: IEEE ICDCS, 2012, pp. 688-697.

[14] Y. Wang, H. Dai, T. Zhang, W. Meng, B. Liu, GPU-accelerated name lookup with
component encoding, Comput. Netw. 57 (2013) 3165-3177.

[15] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, Wire speed name lookup: a
GPU-based approach, USENIX Symposium on Networked Systems Design and
Implementation, NSDI, 2013.

[16] W. Quan, C. Xu, J. Guan, H. Zhang, L.A. Grieco, Scalable name lookup with
adaptive prefix Bloom filter for named data networking, IEEE Commun. Lett.
18 (2014) 102-105.

[17] W. Quan, C. Xu, A.V. Vasilakos, J. Guan, H. Zhang, L.A. Grieco, TB2F: tree-bitmap
and Bloom-filter for a scalable and efficient name lookup in content-centric
networking, IFIP Networking Conf., 2014.

[18] M. Varvello, D. Perino, J. Esteban, Caesar: a content router for high speed for-
warding, in: ACM ICN, 2012, pp. 73-78.

[19] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding tables for fast
routing lookups, in: ACM SIGCOMM 1997, Cannes, France, 1997, pp. 3-14.

[20] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE]. Sel. Areas Com-
mun. 17 (June, 6) (1999) 1083-1092.

[21] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway and multi-
column search, IEEE/ACM Trans. Networking 7 (1999) 324-334.

[22] P. Gupta, S. Lin, N. McKeown, Routing lookups in hardware at memory access
speeds, in: [EEE INFOCOM, 1998, pp. 1240-1247.

[23] D. Pao, C. Liu, A. Wu, L. Yeung, K.S. Chan, Efficient hardware architecture for
fast IP address lookup, IEE Proc. Comput. Digit. Tech. 150 (Jan., 1) (2003)
43-52.

[24] V.C. Ravikumar, R.N. Mahapatra, TCAM architecture for IP lookup using prefix
properties, IEEE Micro 24 (March-April, 2) (2004) 60-69.

[25] I Sourdis, G. Stefanakis, R. de Smet, G.N. Gaydadjiev, Range tries for scalable
address lookup, in: ACM/IEEE ANCS, 2009, pp. 143-152.

[26] D. Pao, Z. Lu, Y.H. Poon, IP address lookup using bit-shuffled trie, Comput.
Commun. 47 (2014) 51-64.

[27] IDT Network search engine, http://www.idt.com.

[28] D. Pao, Z. Lu, A multi-pipeline architecture for high-speed packet classification,
Comput. Commun. 54 (2014) 84-96.

[29] NDN Project Team, “NDN packet format specification”, http://named-data.net/
doc/ndn-tlv/.

[30] NDN Project Team, “NDN protocol design principles”, http://named-data.net/
project/ndn-design- principles/.

[31] G. Carofiglio, M. Gallo, L. Muscariello, D. Perino, Pending interest table sizing
in named data networking, in: ACM ICN, 2015, pp. 49-58.

[32] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Com-
mun. ACM 13 (1970) 422-426.

[33] D. Perino, M. Varvello, A reality check for content centric networking, in: ACM
ICN, 2011, pp. 44-49.

[34] H. Song, F. Hao, M. Kodialam, T.V. Lakshman, IPv6 lookups using distributed
and load balanced bloom filters for 100 Gbps core router line cards, in: IEEE
INFOCOM, 2009, pp. 2518-2526.

[35] A. Afanasyev, C. Yi, L. Wang, B. Zhang, L. Zhang, “Scaling NDN Routing: Old
Tale, New Design”, Technical Report NDN-0004, 2013.

[36] N.LM. van Adrichem, F.A. Kuipers, Globally accessible names in named data
networking, [EEE INFOCOM WKSHPS, 2013.

[37] G. Rossini, D. Rossi, M. Garetto, E. Leonardi, Multi-terabyte and multi-Gbps in-
formation centric routers, IEEE INFOCOM, 2014.

[38] R.B. Mansilha, L. Saino, M.P. Barcellos, M. Gallo, E. Leonardi, D. Perino, D. Rossi,
Hierarchical content stores in high-speed ICN routers: emulation and proto-
type implementation, in: ACM ICN, 2015, pp. 59-68.

[39] Y. Thomas, G. Xylomenos, C. Tsilopoulos, G.C. Polyzos, Object-oriented packet
caching for ICN, in: ACM ICN, 2015, pp. 89-97.

[40] C.Yi, A. Afanasyev, L. Wang, B. Zhang, L. Zhang, Adaptive forwarding in named
data networking, ACM SIGCOMM Comput. Commun. Rev. 42 (3) (2012) 62-67.

[41] G. Carofiglio, M. Gallo, L. Muscariello, ICP: design and evaluation of an inter-
est control protocol for content-centric networking, in: IEEE INFOCOM, 2012,
pp. 304-3009.

[42] AJ. Abu, B. Bensaou,].M. Wang, Interest packets retransmission in lossy
CCN networks and its impact on network performance, in: ACM ICN, 2015,
pp. 167-176.

[43] F. Pike,]. Alakuijala, CityHash: fast hash functions for strings, 2011. http://code.
google.com/p/cityhash.

[44]].-P. Aumasson, DJ. Bernstein, Siphash: a fast short-input PRF, Cryptology
ePring Acrhive, Report 2012/351, 2012. http://eprint.iacr.org.

[45] M.V. Ramakrishna, E. Fu, E. Bahcekapili, Efficient hardware hashing functions
for high performance computers, IEEE Trans. Comput. 46 (1991) 1378-1381.

http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf
http://named-data.net/publications/techreports/
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://www.idt.com
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://named-data.net/doc/ndn-tlv/
http://named-data.net/project/ndn-design-principles/
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://code.google.com/p/cityhash
http://eprint.iacr.org
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041

	Hardware accelerator to speed up packet processing in NDN router
	1 Introduction
	2 Packet processing challenges in NDN
	3 Related work
	3.1 Related work on the design of FIB, CS and protocol issues

	4 Proposed method
	4.1 Implementation of the hardware tables
	4.2 Performance evaluation and comparison

	5 Concluding remarks and future work
	 Acknowledgments
	 References

