
Computer Communications 91–92 (2016) 109–119

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Hardware accelerator to speed up packet processing in NDN router

Weiwen Yu, Derek Pao

∗

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:

Received 4 December 2015

Revised 17 June 2016

Accepted 18 June 2016

Available online 23 June 2016

Keywords:

Packet processing

Named data networking

Hardware lookup table

a b s t r a c t

A hardware implementation of the pending interest table (PIT) for named data networking (NDN) is pre-

sented. One of the major challenges in this research is the per-packet update requirement in NDN packet

processing. In general, the data structure of the lookup table is optimized in order to minimize the im-

plementation cost and maximize the lookup performance. However, more computation steps are required

to update the highly optimized data structure. Thus, the design of the hardware lookup table needs to

tradeoff between the implementation cost, lookup performance and update cost. We employ an on-chip

Bloom Filter and an off-chip linear-chained hash table in our design. The lookup operation for an in-

terest/data packet and the associated update operation are integrated into one task. This can effectively

reduce the overall processing time and the I/O communications with the software control unit. Our de-

sign also incorporates a name ID table (nidT) to store all distinct name IDs (nid) in the PIT. If the content

name in an interest packet can be found in the nidT , then the router needs not look up the forwarding

information base (FIB) to determine how to forward the interest packet. This can reduce the workload of

the FIB significantly. For proof-of-concept, the proposed hardware architecture is implemented on a FPGA

and the overall packet processing rate is about 56 to 60 million packets per second.

© 2016 Elsevier B.V. All rights reserved.

1

e

s

g

A

c

e

b

c

m

o

g

b

e

[

h

r

i

P

a

c

t

p

f

n

l

f

o

i

q

i

W

(

f

h

0

. Introduction

The Internet is one of the greatest inventions of all time. It has

normous impacts on various aspects of human civilization, e.g.

cience and technology, business operations, social behavior, and

overnment. The Internet is a host-based communication network.

 host connected to the Internet is identified by an Internet Proto-

ol (IP) address. In order to set up a communication channel, the

nd users must know the IP address of the other parties. Driven

y advancements in both software and hardware technologies, the

ommunication needs have gradually shifted from point-to-point

essage exchanges to content distributions, i.e. the dissemination

f digital media such as music, picture, video, e-book, etc. The

lobal demand for data is nearing 30 exabytes (30 billion giga-

ytes) per month in 2011. Also, it was estimated that about 500

xabytes of new on-line contents had been created in 2008 alone

1] .

Under the current communication model of the Internet, a user

as to find out where the contents are located in order to make a

equest to retrieve the required data. A user has to know “where ”

n addition to “what ” he/she wants to retrieve. One can easily see
∗ Corresponding author. Fax: + 85234420562.

E-mail addresses: weiwenyu2-c@my.cityu.edu.hk (W. Yu), d.pao@cityu.edu.hk (D.

ao).

ttp://dx.doi.org/10.1016/j.comcom.2016.06.004

140-3664/© 2016 Elsevier B.V. All rights reserved.
 serious semantic gap between the existing host-based communi-

ation model and the content-centric communication needs.

Named Data Networking (NDN) [2,3] is a new network architec-

ure proposed by the computer network community to better sup-

ort the emerging communication needs. Packets under the NDN

ramework are identified by names , instead of the IP address/port

umber in the conventional Internet Protocol . Unlike the fixed-

ength IP address, a packet name can have arbitrary length. Packet

orwarding in a NDN router involves more complex name-lookup

perations.

Communications in NDN are initiated by receivers. A user wish-

ng to retrieve a given content sends out an interest packet (a re-

uest) to a NDN router. The interest packet carries the name that

dentifies the desired data unit, e.g. a segment of a video file.

hen the NDN router receives an interest packet from an interface

called a face in the NDN terminology), the router will perform the

ollowing actions:

• The router will check its cache store (CS) to see if the requested

data packet is already available. If a matching data packet can

be found, then the data packet will be sent out along the face

where the interest packet is received.

• If the requested data packet is not available in the CS, the

router will search the Pending Interest Table (PIT) to see if the

processing of the request for the same data packet is already

in-progress. If a matching entry is found in the PIT, the given

http://dx.doi.org/10.1016/j.comcom.2016.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.06.004&domain=pdf
mailto:weiwenyu2-c@my.cityu.edu.hk
mailto:d.pao@cityu.edu.hk
http://dx.doi.org/10.1016/j.comcom.2016.06.004

110 W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119

S

T

i

p

w

2

N

f

I

q

o

t

S

g

c

r

u

c

m

o

f

d

t

s

s

t

i

p

P

q

q

d

m

b

p

w

t

t

a

a

t

m

f

p

b

p

8

m

T

s

i

n

t

b

t

g

i

u

n

i
face will be added to the list of faces associated with the PIT

entry.

• If no matching entry is found in the PIT, a new entry for the

packet name will be added to the PIT. The router will then look

up the Forwarding Information Base (FIB) to determine the next-

hop for the given Interest packet. The lookup operation in the

FIB is a component-based longest prefix match (LPM).

A response to the interest packet (i.e. a data packet) will be

generated when (i) the interest packet reaches the source of the

requested data; or (ii) the requested data packet can be found in

the CS of a NDN router on the path towards the data source. On

receiving a data packet, the NDN router will perform the following

actions:

• The router looks up its PIT. If a matching interest is found, the

data packet will be sent along the list of faces associated with

the pending interest, and the corresponding PIT entry will be

removed. The data packet may be cached based on the cache

management policy. As a result, the CS will also be updated.

• If the given name cannot be found in the PIT, the data packet

is unsolicited and it will be discarded.

The functional requirements of packet processing in the NDN

architecture have been defined, but the design and implementa-

tion of the NDN router is still a research problem pursued by the

academia and industry. One of the major research issues is re-

lated to the implementation of the lookup tables to support NDN

packet processing [4–18] . Most of the previous publications on

the implementation of lookup tables in NDN router are software-

based, and up to now there are only a couple of publications

on hardware implementation. This development trend resembles

the historical development of the IP address lookup problem. In

the 1990s, researches on IP address lookup methods were mostly

software-based [19–21] . Throughput of software-based methods

is limited and cannot meet the throughput requirements of core

router. Researches on IP address lookup methods gradually shifted

to hardware-based approaches in the 20 0 0s [22–26] .

Packet processing in NDN involves 3 major lookup tables,

namely the FIB, PIT and CS. The CS is an optional component.

The network can function properly without the CS. However, its

present may enhance the overall system performance. To the best

of our knowledge, we have only seen 1 published paper that

presents a hardware implementation of the FIB [18] . The method

of [18] requires the router to have 2 switch fabrics. Another ap-

proach to speed up the FIB lookup is to exploit the massively par-

allel computation power of GPU [13–15] . Routers without the re-

quired special hardware (e.g. one more switch fabric or GPU) may

only implement the FIB using conventional software technology.

Previously published software implementations of the PIT and FIB

can only achieve packet processing rate of a few million packets

per second (MPPS). In this paper, we shall present a hardware ac-

celerator that can improve the packet processing rate of the PIT

up to 60 MPPS, and reduce the workload of FIB lookup signifi-

cantly, e.g. by 10 times or more. Hence, a software-based FIB may

offer sufficient throughput for the NDN router. Our method can

be extended to include the CS table as well. A major issue that

is being addressed in this study is the stateful processing require-

ment in NDN. The hardware accelerator provides a simple interface

and aims to minimize the workload of the software. It functions

like a TCAM (ternary content addressable memory) co-processor

[27] in conventional TCP/IP router. The network processor submits

lookup/update requests to the hardware accelerator, which carries

out the request and returns the lookup results. The network pro-

cessor will then carry out the required actions accordingly.

The organization of the remaining parts of this paper is as fol-

lows. Basic packet processing requirements in NDN is analyzed in
ection 2 . A brief review of related work is presented in Section 3 .

he architecture of the proposed hardware accelerator is presented

n Section 4 . Performance evaluations and simulations results are

resented in Section 4.2 . Section 5 is the conclusion and future

ork.

. Packet processing challenges in NDN

A fundamental difference between the packet processing in

DN and conventional TCP/IP routers is that NDN requires state-

ul processing, whereas TCP/IP only requires stateless processing.

n the conventional TCP/IP router, the processing (e.g. admission,

ueueing and forwarding) of an incoming packet is independent

f the packet arrival history. The nominal update frequency to

he IP routing table is about a few hundred times per second.

ome recent hardware implementations of IP address lookup en-

ine [26] and multi-field packet classifier [28] support packet pro-

essing rate at 300 plus MPPS. The update to lookup ratio in IP

outing table is very low, e.g. a few updates per million lookup. The

pdate to lookup ratio for packet classifier is even lower because

lassification rules are often defined manually by the network ad-

inistrator. Hence, the designer can optimize the data structures

f the hardware TCP/IP lookup tables to maximize the lookup per-

ormance. The system can afford to spend more time on each up-

ate operation. Typically, necessary modifications to the data struc-

ures for an update request are determined by the management

oftware, and then corresponding memory-write commands are is-

ued to the hardware to make the changes.

The processing of an incoming NDN packet depends on packets

hat have previously been received by the router. This has a great

mpact on the design of the hardware lookup tables. The stateful

rocessing requirement of NDN leads to per-packet update to the

IT and the CS tables. For example, an insertion to the PIT is re-

uired for each interest packet, and a deletion from the PIT is re-

uired for each data packet. Suppose the most recently received

ata packets are saved in the cache store. Hence, a cache replace-

ent is required for each data packet. This means that there will

e 2 updates (1 insertion and 1 deletion) to the CS for each data

acket. To cope with the per-packet update requirement, the hard-

are should be able to execute update and lookup operations to

he PIT/CS tables with the same efficiency. As a result, the lookup

able design techniques for TCP/IP packet processing may not be

pplied to NDN. In particular, update operation should not involve

ny precomputation by the software to determine how to modify

he data structures.

Data and interest packets are named. A name is made up of

ultiple components represented in the type-length-value (TLV)

ormat [29] . A content (e.g. a video) may be divided into multi-

le segments. Two segmenting conventions, namely the sequence-

ased segmentation and the byte-offset segmentation, have been

roposed. For example, the name /com/youtube/funny-video-

/2/1234 contains 5 components, and it refers to a specific seg-

ent of a video called funny-video-8 published by youtube.com.

he last two components specify the version number 2 and the

egment number 1234 of the given video. Matching of names

s component-based instead of character-based. For example, the

ame /abc/de does not match the name /ab/cde.

According to the NDN proposal a data packet satisfies an in-

erest if the content name in the interest packet is a (component-

ased) prefix of the content name in the data packet. The objec-

ive of the NDN proposal is to allow more flexibility for traffic ag-

regation and discovery [30] . It is expected that vast majority of

nterest packets will carry full names. Exact match is used to look

p an interest packet name in the PIT. To lookup a data packet

ame in the PIT, the router is required to find potential match-

ng interest for every component-based prefix of the data name.

W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119 111

A

Y

u

n

h

P

c

a

s

a

a

P

m

e

t

i

p

t

t

r

t

e

t

p

P

s

s

e

g

s

i

t

p

i

i

P

w

t

P

3

t

i

S

p

h

o

i

p

f

q

p

m

t

a

i

h

M

t

P

f

t

n

l

s

t

P

l

t

a

t

s

w

i

t

t

p

s

H

i

t

t

B

t

7

a

o

o

t

t

i

p

d

p

t

r

7

t

c

v

h

h

o

c

m

[

s

m

a

p

t

s

k

T

s

t

a

m

c

t

r

t

t

t
ll-prefix match is much more time consuming than exact match.

uan and Crowley [4,5] argue that network traffic aggregation is

sually performed at edge router where the router may have large

umber of lower speed interfaces. On the other hand, core router

as fewer interfaces but each interface has much higher line speed.

acket processing speed instead of traffic aggregation is the major

oncern in core router. They propose to use exact match for data

nd interest packets lookup in PIT/CS at core router. The Cisco re-

earch team [12] also opines that all-prefix match is not feasible

t scale and may actually create more problems. In this study, we

lso adopt the exact match approach in the implementation of the

IT.

Assume the payload of data packet is 1500 bytes (the maxi-

um transmission unit allowed in Ethernet), and the size of inter-

st packet is between 128 and 256 bytes. The ratio of data packet

o interest packet is about 1 to 1. Hence, the average packet size

s about 900 to 10 0 0 bytes. For a 10 Gbps interface the maximum

acket rate is about 1.38 MPPS. The average round-trip delay of

oday’s Internet is about 80 ms. Hence, the number of entries in

he PIT for a 10 Gbps interface is about 55 K. For a medium scale

outer such as the Cisco ASR 90 0 0 with 36 ×10 Gbps interfaces,

he expected overall packet arrival rate is about 45 MPPS, and the

xpected number of entries in the PIT is about 2 M. The size of

he PIT may be overestimated based on the aforementioned sim-

le analysis. Carofiglio et al. [31] develop an analytical model of

IT dynamics. Based on their model the size of the PIT is relatively

mall in the average case, e.g. 10 K to 200 K. In the worst case, the

ize of the PIT is up to 20 K entries for edge router, and up to 2 M

ntries for core router. Discussion on the size of the FIB will be

iven in Section 3.1 .

The PIT/CS tables are defined to have global context with re-

pect to the NDN router, i.e. the two tables are supposed to store

nformation regarding the packet arrival history for all interfaces of

he router. If a centralized lookup table is employed, its through-

ut should be equal to the sum of the packet arrival rates of all

nterfaces. It is very difficult, if not impossible, for software-based

mplementation to meet the required throughput of a centralized

IT. An alternative design is to employ a distributed lookup table,

here a table partition is allocated in each interface. Tradeoff be-

ween the centralized versus distributed implementations of the

IT will be discussed in the next section.

. Related work

In this section we shall give an overview of related work on

he design and implementation of the PIT. Other studies on the

mplementations of CS, FIB, and NDN protocols will be given in

ection 3.1 . A major issue in the implementation of PIT is the

lacement of the PIT in the NDN router. Two different approaches

ave been proposed, i.e. a centralized PIT serving all interfaces,

r a distributed PIT located in each interface. If a centralize PIT

s used, the required processing rate should be sufficient to sup-

ort the sum of the data rates of all interfaces. The major difficulty

or hardware implementation of PIT is the per-packet update re-

uirement. To the best of our knowledge, we have not seen any

ublished hardware implementation of the PIT. Previous published

ethods are software-based. However, a pure software implemen-

ation is unlikely to be able to meet the throughput requirement of

 centralized PIT for medium to large scale routers. Some software

mplementations based on conventional d -left and linear-chained

ash tables [5,12] can only achieve packet processing rate of a few

PPS.

An alternative approach is to employ a distributed PIT. If a dis-

ributed PIT is used, there can be 3 possible placements of the

IT, namely in the ingress [6,7] , egress [8] , or third-part [9] inter-

aces. The drawback of placing the PIT in the ingress interface is
hat when a data packet is received, the header of the data packet

eeds to be broadcasted to all other interfaces to perform the PIT

ookup. Thus, the work load of each PIT partition is equal to the

um of the data packet arrival rates on all other interfaces. Hence,

he workload of each PIT partition is about 50% of a centralized

IT.

If the PIT is placed in the egress interface, then the FIB has to be

ooked up before the PIT. In general the FIB lookup time is longer

han the PIT lookup time if the FIB is implemented in software. As

 result, the FIB will likely become the system bottleneck. Placing

he PIT in third-party interface will require another switch fabric to

witch the packet headers and lookup results among the interfaces,

hich represents a very substantial hardware overhead. Moreover,

f the FIB is also implemented using the distributed approach [18] ,

hen there may be contention for the switch fabric in switching

he requests/results for PIT and FIB lookups.

Bloom filter (BF) [32] is a popular approach used in the im-

lementation of NDN lookup tables. BF is a memory efficient data

tructure for checking if an input key is a member of a data set.

owever, the BF can only provide a binary yes/no reply, and it

s not able to return the identity of the matching key. Moreover,

he BF may generate false positive. To support delete operation,

he bit-vector is replaced by an array of counters. This variant of

F is known as the counting Bloom filter (CBF). An implementa-

ion of a distributed PIT using BF called DiPIT is presented in [6,

] . The PIT partitions are located at the ingress interfaces. When

 data packet is received, the packet header is broadcasted to all

ther interfaces for looking up the PIT. If there is a hit in the BF

f interface i , the data packet is assumed to be solicited by an in-

erest packet previously received at interface i . The data packet will

hen be forwarded to interface i . The DiPIT method is implemented

n software [6] . The overall packet processing rate is limited, in

articular each PIT partition is required to perform the lookup for

ata packets received from all other interfaces. In principle this ap-

roach can be implemented in hardware. However, there can be

wo potential drawbacks. First, to keep the false positive rate at a

easonably low level, a larger number of hash functions (e.g. 5–

) are necessary. If k hash functions are used, an update opera-

ion requires 2 k memory accesses (k memory reads to obtain the

urrent count values, and k memory writes to update the count

alues). Second, the size of the counter in the CBF is restricted in

ardware implementation, e.g. 3-bit counters are used in [6] . It is

ighly likely that the 3-bit counter may overflow. When counter

verflow occurs, the CBF fails and subsequent update operations

annot be performed correctly. On the other hand, if counters with

ore bits are used, the CBF may not be stored on-chip.

Another design of PIT using BF called MaPIT is presented in

10] . BF does not identify the matching key. The MaPIT method re-

olves this problem by introducing an additional index called the

apping array (MA). The BF bit-vector is divided into n segments,

nd the MA is an n -bit vector. When a hash function map the in-

ut key to segment i of the BF bit-vector, the i th bit of MA is set

o 1. The value of MA is used as the address to access the packet

tore to retrieve the associated control information of the matching

ey. The size of the BF bit-vector is set to 2 24 , and n is equal to 30.

welve hash functions are used. The BF bit-vector and the MA are

upposed to be stored in on-chip memory, and the CBF (required

o support insertion and deletion to the PIT) and the packet store

re stored in off-chip memory. The authors of [10] evaluate their

ethod on a conventional Intel i3 CPU. Their evaluations mainly

oncern about the on-chip memory usage, false positive rate and

he setup time of the data structures. Packet processing rate is not

eported in their paper. We have four major concerns regarding

he MaPIT method. First, the multi-level on-chip cache memory of

he CPU is controlled by the memory management unit based on

he built-in set-associative mapping and least recently used (LRU)

112 W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119

p

r

s

d

o

T

B

l

c

t

e

G

n

b

e

L

t

d

v

o

c

c

f

c

f

s

h

m

t

t

t

d

t

i

B

m

w

i

a

o

s

o

u

s

s

i

s

s

f

A

p

a

g

g

t

e

f

d

a

g
cache replacement policy. The programmer does not have direct

control of the cache memory allocation. Hence, it is not possible to

ensure that the full BF bit-vector is always stored in on-chip mem-

ory. Second, the packet store has 2 30 entries (since the MA has 30

bits), while the number of PIT entries is expected to be in the or-

der of million. Not all the packet store locations are addressable

since only k = 12 bits out of n = 30 bits in the MA can be equal to

1. Hence, the utilization of the packet store is pretty low, e.g. less

than 1%. Third, the size of a BF segment is 2 19 . It is highly likely

that multiple distinct keys can have the same MA value. The au-

thors of [10] have not discussed how to resolve collisions in the

packet store. Fourth, the software needs to make 24 accesses to

the main memory in order to update the CBF. This will limit the

overall packet processing rate.

Yuan and Crowley present a software implementation of the PIT

using d -left hash table [5] . The PIT is composed of d hash tables (d

is equal to 2–4). Each hash table has B buckets, and each bucket

can hold E = 8 entries. When a key is inserted to the PIT, all the d

hash tables are probed, and the key is inserted into the hash table

bucket with the least load. The system also has an overflow table

to store the items that cannot fit into the hash tables. To reduce

the memory requirements and also speed up the searching time,

a key is only represented by a 16-bit fingerprint in the hash ta-

ble. The overflow table may help to resolve bucket overflow, but

it will slow down the searching time. Another disadvantage of this

approach is that the probability of having duplicated fingerprints

(corresponding to distinct keys) mapped to the same hash bucket

is not negligible. Interest packets with the same name will not be

aggregated in their design.

3.1. Related work on the design of FIB, CS and protocol issues

The research team from Alcatel-Lucent [33] comments that

there are about 1 trillion webpages as for January 2001, and these

webpages are mapped to about 280 million globally unique and

routable hostnames. Hence, they opine that the size of the FIB is

potentially in the order of 100 million. They also present a dis-

tributed implementation of the FIB in hardware [18] . The FIB is

divided into multiple disjoint partitions, and one partition is allo-

cated on to each line card. The implementation of the lookup table

is based on the DLB-BF method of [34] . The FIB lookup rate is up

to 160 MPPS. The DLB-BF method requires an off-chip CBF main-

tained by the management software. Hence, this implementation

technique does not support per-packet update, and it is not appli-

cable to the implementation of PIT.

Some recent studies on name prefixes aggregation suggest that

the size of the FIB can be reduced significantly. Afanasyev et al.

propose a prefixes aggregation scheme based on the map-n-encap

approach [35] . When a client wants to request information based

on a provider independent name, it will first look up a mapping

system (e.g. an extension of the domain name system) to find

the corresponding provider-aggregatable address (i.e. the ISP prefix).

The ISP prefix is stored as an additional field in the packet header,

called the forwarding alias . The FIB in the NDN router will have

two parts, the name prefixes for intra-provider routing and the for-

warding alias for inter-provider routing. Major ISPs can have mul-

tiple tens of millions of subscribers. Hence, the number of intra-

provider name prefixes in the FIB may be in the order of million.

Adrichem and Kuipers [36] propose a similar name prefixes aggre-

gation approach based on autonomous system rather than ISP.

The research team from Tsinghua University proposes a soft-

ware implementation of the FIB [13–15] . They exploit the paral-

lel processing power of GPU to speed up the lookup operation,

and can achieve a lookup rate of about 60 MPPS for a name ta-

ble with 10 M name prefixes. The packet processing rate is quite

high. However, the GPU approach may not be suitable for the im-
lementation of the PIT/CS table because of the per packet update

equirement. Whenever the table is updated, changes to the data

tructures are to be determined by conventional CPU. The revised

ata structures are then uploaded to the GPU memory. The lookup

perations are suspended during the update process.

Another research team from Beijing University of Posts and

elecommunications proposes to use a hybrid trie-based and

loom-filter approach to perform FIB lookup [16,17] . The packet

ookup rate is only up to 1 MPPS when implemented in software.

There have been some significant results on the design of the

ache store in NDN router. High volume of network traffic passes

hrough a core router per second. In order for the cache store to be

ffective, its size must be sufficiently big, e.g. in the order of 100

B. The cost of implementing a cache store of that size in RAM is

ot affordable. Also the corresponding size of the CS table required

y the NDN router for packet processing is not manageable. Rossi

t al. [37,38] propose a hierarchical 2-level cache architecture. The

1 cache with 2–10 GB is implemented using SRAM/DRAM, and

he L2 cache with larger capacity is implemented using solid state

isk (SSD). L2 has sufficient capacity to hold half a million full

ideo files. The system may pre-fetch data packets from L2 to L1

n-demand based on the recently received interest packets.

Conventional cache management policies include the least re-

ently used, least frequently used, and the first-in-first-out poli-

ies. Thomas et al. [39] propose another cache management policy

or NDN, called the object-oriented caching . If a video is popular,

aching the video in NDN routers may improve the network per-

ormance. A video is divided into thousands of segments. Caching

ome random segments of the video in a router is not useful. It is

ighly unlikely that multiple clients are requesting the same seg-

ent within a time window of 0.1 s. Their caching policy requires

hat if a content is to be cached, the cache store will always hold

he first k segments of the given content, where k is a system con-

rol parameter.

The aforementioned studies consider the PIT, CS or the FIB in-

ependently. Some recent studies attempt to implement a proto-

ype NDN router. The Tsinghua research group presents a software

mplementation of an integrated FIB, CS and PIT using CBF called

FAST [11] . Suppose the content name has L components. Their

ethod will iteratively search the lookup table with i components,

here i starts from L and is decremented iteratively until a match

s found. Their method running on an Intel Xeon E5645 CPU can

ttain 36.41 million lookup per second. For the insert and delete

perations, they can only achieve 1.56 and 3.01 million updates per

econd, respectively. Because of the per packet update requirement

f the PIT/CS, the overall packet processing rate is limited by the

pdate rate.

Recently, the research team from Cisco presents a prototype de-

ign of a software NDN router [12] . Instead of using a simple linear

earch strategy as in [11] , the Cisco team uses a 2-stage search-

ng heuristic to reduce the lookup time of the FIB. The search

tarts from name prefixes with M components (where M is a de-

ign parameter), and either continues to shorter prefixes or restarts

rom a longer prefix if needed. Their design is based on the Cisco

SR 90 0 0 software router with four 10 Gbps interfaces. Their im-

lementation with 4 sets of (dispatcher + 2 packet processes) can

chieve a packet processing rate of 4.5 MPPS.

Some other researches address the issues on forwarding strate-

ies, flow control and communication protocols. The research

roup from UCLA and University of Arizona investigate the adap-

ive forwarding strategies [40] . The router maintains the status of

ach link, and uses this information to make decision on how to

orward or retransmit interest packets. They also propose to intro-

uce the negative ACK if a router does not know how to forward

n interest packet. A research group from Alcatel-Lucent investi-

ates the flow control of NDN traffics [41] . They present a window-

W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119 113

Fig. 1. Block diagram of the NDN router.

b

T

t

[

l

4

r

s

u

s

t

p

o

t

o

w

w

w

b

v

w

c

t

a

t

t

t

v

t

fi

i

T

p

w

v

I

S

i

a

e

b

0

t

m

i

s

t

3

t

b

p

r

F

b

p

p

s

u

r

a

t

a

r

w

t

r

c

q

t

c

f

t

e

h

t

T

p

c

d

h
ased flow control mechanism similar to the TCP flow control.

hey envision that a steady stream of interest and data packets of

he same content will be passing through a NDN router. Aub et al.

42] study interest packet retransmission in lossy communication

inks and its impact on network performance.

. Proposed method

We adopt a hardware and software co-design approach. The

ole of the hardware accelerator is to relieve the workload of the

oftware on PIT lookup and management. The software control

nit is mainly responsible for coordinating the operations of the

witch fabric, FIB, cache store (if present), and the high level pro-

ocols. In most of the times, the lookup operation of an interest

acket is followed by an insert operation, and the lookup operation

f a data packet is followed by a delete operation. In our design,

he hardware will integrate the lookup and the associated update

peration into one command. By doing so, the processing time as

ell as the I/O communications between the software and hard-

are can be reduced.

The block diagram of the NDN router with the proposed hard-

are accelerator is depicted in Fig. 1 . Packet headers are collected

y individual interfaces and sent to the network processor (NPU)

ia a dedicated bus. The software control unit running on the NPU

ill then dispatch the lookup/update requests to the hardware ac-

elerator implemented on a FPGA.

In this study, we divide the packet name into two logical parts,

he content name (including the version number if applicable),

nd the segment number (sn). A 32-bit sn is assumed. Thanks

o the TLV representation, the segment number can be easily ex-

racted from the packet name. If the packet name does not con-

ain a segment number, then our system assumes a default sn

alue of 2 32 −1 (32 bits of 1). The default sn value is to avoid po-

ential confusion with other interest packet that is requesting the

rst segment of a file with sn = 0. Lookup operation on the PIT

s based on the ordered pair (content name, segment number).

he content name can have variable length. It is much more ex-

ensive to perform matching of variable-length entities in hard-

are. To facilitate more efficient implementation of the PIT, the

ariable-length name is converted to a fixed-length 64-bit name

D (nid) using some standard hash functions, e.g. CityHash [43] or

ipHash [44] . By doing so, the lookup/update operation on the PIT

s much simplified. If k unique names are uniformly mapped to

 64-bit number space, the collision probability is approximately
qual to 1 − e
−k (k −1)

2 N , where N = 2 64 . Suppose the expected num-

er of unique names stored in the PIT of a NDN router is about

.5 M. The probability of having 2 or more distinct names mapped

o the same nid is about 7 ×10 −9 . Together with the 32-bit seg-

ent number, the chance of having 2 distinct interest packets shar-

ng an identical (nid, sn) pair in the PIT is negligible. Some previous

tudies use up to 32-bit hash values, e.g. [5, 12] . When the size of

he data set is in the order of million, collision is not avoidable if

2-bit hash values are used.

When the router receives an interest packet and has a PIT-miss,

he router needs to find out how to forward the interest packet

y looking up the FIB. In this study the FIB is assumed to be im-

lemented in software. We shall take advantage of the locality of

eference property in the traffic stream to reduce the number of

IB lookup. A window-based flow control mechanism for NDN has

een presented in [41] . The user sends out a sequence of interest

ackets for a given content and waits for the arrival of the data

ackets. Receiving one or more data packets allows the user to

end out new interest packets. The flow control mechanism reg-

lates the stream of interest packets that pass through a NDN

outer. In the design of the hardware accelerator, we incorporate

 nid table (nidT) to store all the distinct nid present in the PIT. If

he router receives an interest packet where the nid is the same

s some other interest packet currently stored in the PIT, then the

outer needs not look up the FIB to determine how to do the for-

arding. Let L be the average number of interest packets of a flow

hat can be captured by the nidT , the number of FIB lookup can be

educed by a factor of L .

The hardware accelerator implements a mirrored and simplified

opy of the PIT table and the nidT . The hardware performs the re-

uired lookup/update operations to the PIT and generates replies

o the NPU. The NPU will then carry out the associated actions ac-

ordingly, e.g. forward or discard the packet, update the control in-

ormation, look up the FIB if required, and etc. Possible extension

o include the CS table will be discussed in Section 5 . We shall first

xplain the interactions between the software control unit and the

ardware accelerator. The implementation of the hardware lookup

able will be discussed in Section 4.1 .

The software and hardware maintain its own copy of the PIT.

he hardware table contains only the essential data fields to sup-

ort the search and update operations, while the software table

ontains other control information that are required for the han-

ling of the data/interest packets. Data fields of the software and

ardware tables are shown in Fig. 2 . The hardware accelerator au-

114 W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119

Fig. 2. Data fields of the software and hardware lookup tables.

Command Parameter Action & reply
LI
(lookup interest)

tag, nid, sn Action: Lookup and update PIT; lookup and update nidT if required
PIT_hit: reply PIT_address
PIT_miss: insert (nid, sn) into PIT, reply PIT_address

lookup nidT with nid
nidT_hit: reply nidT_address
nidT_miss: insert (nid) into nidT, reply nidT_address

Reply: tag, cmdCode, PIT_hit, PIT_address, nidT_hit, nidT_address
LD
(lookup data)

tag, nid, sn Action: Lookup and update PIT
PIT_hit: reply PIT_address, delete the entry from PIT
PIT_miss: reply miss

Reply: tag, cmdCode, PIT_hit, PIT_address
CLR
(clear entry)

tag, nid, sn Action: Delete (nid, sn) from PIT and delete (nid) from nidT

Reply (ACK): tag, cmdCode
IN
(insert to nidT)

tag, nid Action: Insert (nid) to nidT

Reply: tag, cmdCode, nidT_address
RM
(remove from
nidT)

tag, nid Action: Remove (nid) from nidT

Reply (ACK): tag, cmdCode

Fig. 3. Lookup and update commands.

t

w

i

n

P

c

t

a

I

s

i

f

T

b

t

t

i

v

t

t

t

w

t

d

p

s

n

h

t

t

m

f
tomates the management of the PIT and nidT . It may take multiple

clock cycles to carry out a command, and the software can issue

a new command to the hardware before the results for the previ-

ously issued commands have been received. The system identifies

each command/reply by a tag. The software maintains a pool of

free tags, and the commands that are in progress are stored in the

command table (CmdT). In this study, the size of the command ta-

ble is set to 512, hence, a command can be identified by a 9-bit

tag.

The list of commands that the software control unit may issue

to the hardware accelerator is shown in Fig. 3 . The packet process-

ing procedure is as follows. When the software control unit re-

ceives a data packet, it issues a lookup data (LD) command to the

hardware. The software control unit may then proceeds to do other

tasks. The hardware looks up the given (nid, sn) pair in the hard-

ware table. In case of a PIT-hit, the address at which the given (nid,

sn) is found is returned to the software control unit. Moreover, the

hardware will also delete the given entry from the hardware PIT

automatically. When the software control unit receives the reply

from the hardware, it carries out the appropriate actions. For PIT-

hit the software can find out the detailed control information (e.g.

the face list) from the software PIT at the given address, and for-

ward the data packet to the corresponding output interfaces. The

count value in the corresponding nidT entry is decremented by 1.

The entry in the software PIT is released, and can be used to store

other interest packet. In case of PIT-miss, the data packet is dis-

carded. The software control unit is relieved from the burden of

doing PIT lookup and management.

Similarly, when the software control unit receives an interest

packet, it issues a lookup interest (LI) command to the hardware.

The hardware will look up the given (nid, sn) pair in the hardware

table. In case of PIT-hit, the address at which the given (nid, sn) is

found is returned to the software control unit. In case of PIT-miss,
he hardware will perform two related tasks automatically. First, it

ill insert the given (nid, sn) to the hardware PIT. Second, it will

ssue an internal command to look up (and insert) the given nid in

idT . The results returned to the software control unit include the

IT address and the nidT address, if applicable. When the software

ontrol unit receives the reply from the hardware, it will carry out

he required action accordingly. In case of a PIT-hit, the interface

t which the interest packet is received is added to the face list.

n case of a PIT-miss, the given (nid, sn) pair will be stored in the

oftware PIT at the address returned by the hardware. If nidT _hit

s true and the nidT entry is valid, then the interest packet will be

orwarded according to the nextHop stored in the software nidT .

he count value of the corresponding nidT entry is incremented

y 1. If the status of the nidT entry is pending (another software

hread is in the process of looking up the FIB for the given nid),

he software thread for the processing of the given interest packet

s blocked and waits for the status to change to either valid or in-

alid. If nidT _hit is false, the software needs to look up the FIB and

he status of the corresponding nidT entry is set to pending. When

he FIB lookup result is available, the status and nextHop fields in

he nidT entry are updated and other software threads that are

aiting on the FIB lookup result are notified. If we have a FIB-hit,

he interest packet is forwarded. If we have a FIB-miss, the router

oes not know how to forward the interest packet. The interest

acket is dropped and the router may return a NACK to the up-

tream router. It will also need to remove the PIT entry and the

idT entry in the hardware table by issuing a CLR command to the

ardware accelerator.

The commands RM (remove) and IN (insert) are used to manage

he nidT table, if required. In case of a LD command with PIT-hit,

he given entry (nid, sn) in the hardware PIT will be deleted auto-

atically. The NPU can find out the associated nid entry in the nidT

rom the software PIT. When the entry (nid, sn) is deleted from PIT,

W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119 115

Fig. 4. Block diagram of the hardware lookup table.

t

b

i

c

m

q

s

q

w

e

c

t

s

v

t

H

b

i

t

4

u

s

f

I

p

i

l

t

t

n

B

e

a

o

t

b

t

t

Q

Q

.

e

t

t

s

p

i

a

m

F

s

(

l

l

l

l

i

I

a

t

i

w

l

h

f

w

t

t

i

w

p

t

b

P

s

u

v

p

p

r

t

w

4

l

t

r

t

T

t

e

t

d

T

r

m

c

o

h

r

f

t

t

c
he count value of the corresponding nid entry in nidT is reduced

y 1. When the count value is reduced to zero, it means that there

s no pending interest packet with the given nid in the PIT. The

orresponding nid entry in the nidT is said to have expired, and

ay be removed. The expired nid is added to the pending removal

ueue. When the system needs to balance the size of the nidT , the

oftware retrieves the nid to be removed from the pending removal

ueue, and submits a RM command to the hardware accelerator.

The IN command may be used in some rare occasion. The soft-

are is implemented using multi-threading, and the processing of

ach packet is done by a dedicated thread. It is possible that a LI

ommand and a RM command with the same nid are submitted

o the hardware by different software threads at more or less the

ame time. The software will have marked the nidT entry as in-

alid when a RM command is submitted to the hardware. Suppose

he hardware completes the LI command before the RM command.

ence, the software will find out that the nidT address returned

y the hardware is invalid. It will need to look up the FIB for the

nterest packet concerned, and then performs an explicit insertion

o the hardware nidT table using the IN command.

.1. Implementation of the hardware tables

The organization of the PIT and nidT are similar. There can be

p to 8.5 MB of on-chip memory in state-of-the-art FPGA. Since the

ize of PIT is in the order of million, it is not possible to store the

ull lookup table in the on-chip block RAM (BRAM) of the FPGA.

n our design, we make use of the limited on-chip BRAM to im-

lement a BF for the lookup table, and store the full lookup table

n external SRAM. The purpose of implementing the BF is to al-

ow the system to determine in the shortest possible time that if

he input key is not a member of the data set, and the system can

ake appropriate action accordingly. In our design, the system is

ot required to maintain a CBF in order to perform updates to the

F.

Block diagram of the hardware table is depicted in Fig. 4 . The

xternal SRAM array is divided into the data area and the pointer

rea. One memory word can hold a (key, next) pair in the data area,

r 4 pointers in the pointer area. Up to n keys can be stored in

he external table. A key (nid, sn) is mapped to a home bucket

 , where b = H (nid, sn), and H is the hash function. Implementa-

ion of the hash function is based on the family of H 3 hash func-

ions of [45] . Suppose the key has i bits = { x i -1 , …, x 1 , x 0 }. Let

 denote a i × j Boolean matrix, and q k denote the k th row of

. The hash function is defined as H(key, Q) = x 0 · q 0 � x 1 · q 1 �

 . . � x i −1 · q i −1 . The operator ‘ · ’ represents the Boolean AND op-

rator, and � represents the XOR (exclusive-OR) operator. The ma-

rix Q is generated randomly off-line.
For the PIT table, the key contains 96 bits. It is rather expensive

o perform the exclusive-OR operation of 96 bit-vectors. Hence, we

hall first compress the 96 input bits (nid, sn) to 32 bits. The com-

ression is done as follows. A random permutation of the 96 bits

s pre-computed off-line, and the permutation is implemented as

 hardwired circuit in the FPGA. Each block of 3 bits of the per-

uted key is fed to a 3-input XOR gate to produce 1 output bit.

or the nidT table, the size of the key is 64 bits. We shall use the

ame approach to compress the 64-bit key to 32 bits.

Output of the hash function is within the range of 0 to m −1

 m = 2 j). Keys mapped to the same bucket are organized in a linked

ist. The pointer area is used to store the reference addresses of the

inked lists (i.e. the physical address of the first key in each linked

ist). Vacant slots in the data area are chained up to form a free

ist, and the address of the first vacant slot in the free list is stored

n an internal register, i.e. the freeList register.

In a LD command, the hardware will first check the BF-vector.

f BF[b] = 0, the key is not present and the hardware will return

 PIT-miss. If BF[b] = 1, the hardware will traverse the list of keys

hat are mapped to bucket b . The base address of the pointer area

s stored in an internal register r . Each access to the external SRAM

ill read/write a 128-bit word. The reference address of the linked

ist for bucket b is the (b mod 4)-th pointer at location r + b /4. The

ardware traverses the linked list concerned iteratively to search

or the input key. If the input key is found at address x , the hard-

are returns a PIT-hit and will also delete the data item from

he linked list. If the linked list becomes empty after the dele-

ion, BF[b] is reset to 0. If the reference address of the linked list

s modified (i.e. deleting the first node in the linked list), the hard-

are will also update the reference address of the linked list in the

ointer area.

Fig. 5 shows the steps for the LD and LI commands for cases

hat require the minimum number of cycles. The minimum num-

er of clock cycles for a LD command is 2 and 5 for PIT-miss and

IT-hit, respectively. The minimum cycle time for a PIT-miss corre-

ponds to the case where the BF-vector bit is zero. The hardware

ses the 1st cycle to compute the hash function. The on-chip BF-

ector and the pointer area of the external SRAM are accessed in

arallel in the 2nd cycle. Since the BF-vector bit is zero, no further

rocessing is required. The minimum cycle time for a PIT-hit cor-

esponds to the case where the key is stored in the 1st node of

he linked list. After checking the BF-vector in cycle 2, the hard-

are read the stored key in the 3rd cycle and finds a match. In the

th cycle the hardware updates the reference address of the given

inked list and the on-chip BF-vector, if required. In the 5th cycle

he hardware moves the storage slot to the free list.

In a LI command, if the key is found at address x , the hardware

eturns a PIT-hit and the value of x . If the key is not found, then

he key will be inserted at the end of the linked list automatically.

he first empty slot will be allocated to store the inserted key. Af-

er the insertion, the freeList register should be updated to refer-

nce the next free slot. Hence, the hardware is required to bring in

he first slot of the free list in cycle 1 in order to find out the ad-

ress of the next free slot. Suppose the key is inserted at address y .

he hardware will record a PIT-miss and the address y in the reply

ecord for the given tag. The reply record will not be returned im-

ediately. The hardware will issue a lookup request (search-insert

ommand) to the nidT to look for the given nid . The search-insert

peration on the nidT is similar to that of the PIT. The results (nidT -

it or hidT -miss, and the associated address) will be stored in the

eply record for the given command tag. The reply is then ready

or return to the software control unit.

The insert and delete operations on the PIT and nidT are similar

o that of the LD/LI commands, and we do not repeat the descrip-

ion here. From Fig. 5 we can see that in cycle T1 the hardware

omputes the hash function and accesses the data area of the ex-

116 W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119

Fig. 5. Steps for the LD and LI commands requiring minimum number of cycles.

t

i

h

i

r

o

i

4

p

g

T

p

o

t

t

r

e

a

d

s

i

fl

2

i

i

t

a

2

fl

b

d

s

m

t

o

a

m
ternal memory array to retrieve the address of the second node in

the free list. We shall introduce two refinements to the hardware

implementation to reduce the cycle time of LD/LI command. The

commands that operate on a table are lined up in the respective

FIFO queue. The front item of the queue is available at the out-

put interface of the hardware FIFO. We introduce one more regis-

ter, the currentCmd register, in the hardware. By moving the cur-

rent command to the currentCmd register we can have access to

the next command in the queue. This allows the hardware to pre-

compute the hash function of the next command while the current

command is in progress.

For the LD command with PIT-hit, one access to the external

memory (cycle T5) is required when the PIT entry is deleted and

the slot is added to the free list. For the LI command with PIT-

miss, when the input key is added to the table the freeList register

needs to be updated. To do this, the hardware needs to perform

a memory read in cycle T1 to obtain the address of the next free

slot. In general, the LD and LI commands are interleaved. We can

reduce the accesses to the external memory by introducing an in-

ternal buffer (FIFO) to store addresses of the PIT slots that have just

been released. Suppose the size of the FIFO is 32 entries. When a

PIT entry is deleted in a LD command, the address of the deleted

entry is inserted into the FIFO if the queue is not full. If the queue

is full, then the hardware will access the external memory and up-

dates the freeList register as shown in cycle T5 of Fig. 5 . In a LI

command, if the FIFO is not empty then the hardware can get the

address of a free slot from the FIFO. There is no need to access

the external memory in cycle T1, and no need to update freeList

register in cycle T4 when the input key is inserted to the PIT. By

incorporating these 2 refinements, the time required for a LI com-

mand can be reduced by 1 clock cycle, and the time required for

LD command can be reduced by up to 2 clock cycles.

For proof-of-concept, the proposed hardware architecture is im-

plemented on a Xilinx Virtex-7 FPGA (model xc7v20 0 0tflg1925-2).

The size of the Bloom filter of the PIT is set to 2 M entries. The

load factor of the Bloom filter is expected to be about 50%. The

size of the data area of the external table is set to 1.25 M. The size

of the Bloom filter of the nidT is set to 512 K, and the external ta-

ble size is set to 320 K. The hardware contains two sets of PIT/nidT

tables with a total capacity of up to 2.5 M PIT entries and 640 K

distinct nid . When the hardware receives a command, it computes
he parity of the rightmost 16 bits of the input nid . The parity bit

s used to select one of the 2 sets of tables. The reply from the

ardware will also include the parity bit. The external table can be

mplemented using the 133 MHz Cypress flow-through SRAM. The

esource usage of the FPGA is summarized in Fig. 6 . The FPGA can

perate at 100 MHz after place and route. A higher processing rate

s possible of the hardware is implemented with ASIC.

.2. Performance evaluation and comparison

The packet processing rate of the hardware is studied via com-

uter simulation. Without loss of generality the simulation pro-

ram only simulates the performance of 1 set of PIT/nidT tables.

he main purpose of the simulation is to find out the maximum

acket processing rate of the hardware. The input command queue

f the hardware is maintained to have at least 2 entries throughout

he simulation. Unlike simulation studies that aim at evaluating

he queueing discipline, statistical property of the packet arrival

ate is not a major concern in our study. Generation of the inter-

st packets is as follows. We assume there are 250 K distinct flows,

nd the lengths of the flows are generated using a Guassian ran-

om number generator. The mean μ varies from 4 to 20, and the

tandard deviation σ is equal to 0.25 μ. Sequence based segment-

ng is assumed. The starting value of the segment number of each

ow is randomly generated within the range from 0 to 2 30 . The

50 K flows are stored in the interest queue I Q . To avoid generating

nterest packets of a flow having periodic arrival pattern, the queue

s programmed to have 4 exits, namely the front of the queue and

he three quartiles Q 1 to Q 3 . The probability for selecting the flow

t the front, and the 3 quartiles Q 1 , Q 2 , and Q 3 are equal to 60%,

0%, 10%, and 10%, respectively. An interest packet for the selected

ow is generated, and the remaining flow length is decremented

y 1. If the remaining flow length is greater than zero after the

ecrement, the flow is moved to the rear of the queue. When the

elected flow is expired (i.e. its flow length becomes zero), it is re-

oved from the queue. A new flow is generated and is inserted at

he rear of the I Q .

Generation of data packets is event driven, i.e. based on previ-

usly generated interest packets. Flows with pending data packets

re maintained in another queue, the data queue D Q . The manage-

ent of the D Q is similar to that of the I Q . The simulator generates

W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119 117

Fig. 6. Summary of hardware resource utilization.

Fig. 7. Packet processing rate for 1 set of PIT/ nidT tables.

C

A

fl

t

P

a

m

u

a

s

d

i

a

r

s

i

d

t

u

t

l

h

c

w

q

l

p

P

p

M

c

t

w

[

r

w

b

d

r

m

l

m

i

t

o

5

s

i

u

a

l

p

a

s

p

p
 interest packets from the flows in I Q in the initialization phase.

fter the initialization phase, the simulator will choose to select a

ow from either the I Q or the D Q with equal probability. Hence,

he parameter C represents the expected number of entries in the

IT. The simulator will then process a stream of C mixed interest

nd data packets before taking measurements. The throughput is

easured for a period where 10 M packets are processed. Ten sim-

lation runs are conducted for each set of simulation parameters.

In our simulation, all interest packets lookup will have PIT-miss,

nd all data packets lookup will have PIT-hit. This represents a

omewhat worst case scenario for the hardware. When the last

ata packet of a flow is received, the corresponding nid in the nidT

s also expired. The simulator will also simulate the software man-

gement functionality. The given nid is inserted into the pending

emoval queue. The size of the nidT is kept at 256 K. To balance the

ize of the nidT , the front element of the pending removal queue

s retrieved and a RM command is issued to the hardware.

Fig. 7 shows the packet processing rate of the hardware for

ifferent average flow lengths and PIT populations. One can see

hat the packet processing rate is improved when the PIT pop-

lation is lower. With lower PIT population (i.e. the Bloom fil-

er has a smaller load factor), the average length of the linked

ists in the external table is shorter and the throughput of the

ardware can be improved. When the average flow length is in-

reased, the number of RM commands is reduced. Hence, the

orkload of the hardware is also reduced. Fig. 8 shows the re-

uired FIB lookup rate for different average flow lengths. The FIB

ookup rate can be reduced to less than 2 MPPS. The through-

ut of 1 set of PIT/ nidT tables is about 28–30 MPPS. Two sets of

IT/ nidT tables can be implemented on a FPGA. Hence, the overall

acket processing rate of the hardware accelerator can be up to 60

PPS.
c
To the best of our knowledge, we have not seen any publi-

ation on hardware implementation of the PIT. A comparison of

he packet processing rate with some previously published soft-

are implementations of PIT is given in Fig. 9 . DiPIT [6] and MaPIT

10] are not included in the comparison because packet processing

ate of these 2 methods is not available in the original papers.

Only 1 hash function is used in the implementation of the hard-

are lookup table. The false positive rate of the Bloom filter can

e reduced by using more hash functions. We have compared two

ifferent designs that use 1 hash function and 2 hash functions,

espectively. It is found that if 2 hash functions are used, we have

ore flexibility in choosing to store a key in 1 of 2 possible linked

ists, e.g. the linked list with shorter length. The lookup perfor-

ance can be slightly improved. However, the update performance

s degraded. More detailed evaluations via simulation indicate that

he implementation using 1 hash function actually offers better

verall performance.

. Concluding remarks and future work

A hardware implementation of the PIT is presented. A major is-

ue that needs to be resolved is the per-packet update requirement

n the lookup table. The hardware will take care of the lookup and

pdate operations autonomously. In our design, the lookup and the

ssociated update operations are integrated. The software is re-

ieved from the burden of doing the table lookup and update. For

roof-of-concept, the proposed method is implemented on a FPGA,

nd the packet processing rate is about 56 to 60 MPPS. In our de-

ign, we incorporate a nid table (nidT) to store all the distinct nid

resent in the PIT. By doing so, if the router receives an interest

acket where the nid is the same as some other interest packet

urrently stored in the PIT, then the router needs not look up the

118 W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119

Fig. 8. FIB lookup rate for 1 set of PIT/ nidT tables.

Fig. 9. Comparison of packet processing rate with other methods.

r

t

a

C

d

1

t

e

m

s

i

d

r

w

b

s

w

[

s

t

i

r

s

FIB to determine how to do the forwarding. Hence, a software im-

plementation of the FIB may offer sufficient throughput. We shall,

however, investigate possible hardware implementation of the FIB

in our future work.

Fixed-length nid , instead of the variable-length content name, is

commonly used by the research community in the implementation

of the PIT and CS tables. Computation of the nid from the content

name is performed repeatedly when the packet is forwarded from

one router to the next router. Hence, it is desirable to standardize

the hash function for the computation of the nid , and also include

the nid in the packet header such that the computation workload

of the NDN router can be largely reduced.

In our discussion we have only considered the PIT. It is pos-

sible to integrate the CS table with the proposed PIT with minor

refinements. One more control bit is added to the software PIT/CS

table to indicate if the entry corresponds to a pending interest or a

cached data. When a data packet is cached, the table entry needs

not be removed and the control flag in the PIT/CS entry is updated.

Accordingly, one control bit is added to the hardware PIT/CS ta-

ble. Suppose the most recent data packets are cached, then the LD

command with PIT-hit will simply update the control bit instead

of removing the entry from the PIT/CS. If a LD command finds a

matching PIT/CS entry which corresponds to a cached data packet,

then the hardware will generate a PIT-miss instead of a hit. As a
esult, the software will simply discard the data packet. An advan-

age of integrating PIT with CS is that the number of update oper-

tion for each data packet can be reduced from 3 to 1. If PIT and

S are implemented as two independent tables, the processing of a

ata packet may require 3 update operations (1 deletion from PIT,

 deletion and 1 insertion to CS due to cache replacement). By in-

egrating PIT with CS, the deletion from PIT and insertion to CS is

ffectively eliminated. The system only needs to update the infor-

ation stored in the given table entry without modifying the data

tructure. One minor modification to the hardware implementation

s required. One more command is required to carry out explicit

eletion of the corresponding PIT/CS entry when a data packet is

emoved from the cache store. While the organization of the hard-

are table remains more or less unchanged, the size of the ta-

le needs to be adjusted according to the capacity of the cache

tore. We shall further investigate how to integrate our method

ith the 2-level hierarchical cache store architecture proposed in

37] .

Adaptive forwarding strategies [40] can be incorporated with a

imple refinement to the proposed method. In addition to the nex-

Hop value, the address of the matching FIB entry can be stored

n the software nidT table. Knowing the matching FIB entry, the

outer can carry out the adaptive forwarding strategies as pre-

ented in [40] .

W. Yu, D. Pao / Computer Communications 91–92 (2016) 109–119 119

l

m

f

p

p

n

h

p

T

h

c

t

o

m

p

w

a

m

A

C

t

c

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
In this study, we use exact match instead of all-prefix match to

ook up data packet names in the PIT. How to support non-exact

atch and the associated per-packet update at high speed requires

urther research. The prefix match requirement also has great im-

acts on the management of the CS table. According to the NDN

roposal, an interest name is matched against prefixes of the data

ames in the cache store. To facilitate fast CS table lookup using

ashing, a data packet name with L components needs to be ex-

anded to L discrete names with 1 to L components, respectively.

he L discrete names for the given data packet are stored in the

ash table. When a data packet is added to or removed from the

ache, we need to perform L insert or delete operations to the CS

able. The size of the CS table is increased, and the CS table will be

verwhelmed by the large number of update operations. The vast

ajority of interest packets carry full names, and only a very small

ercentage of interest packets may carry partial names. Hence, it is

orthwhile to investigate if name discovery can be resolved by the

pplication layer such that NDN router needs not perform prefix

atch of names.

cknowledgments

This work was supported by a grant from the Research Grant

ouncil of the HKSAR, China (Project No. CityU 120513). The au-

hors are grateful to the reviewers for their support and valuable

omments.

eferences

[1] J.F. Gantz et al., The expanding digital universe: a forecast of worldwide in-

formation growth through 2010, IDC White Paper, 2007. http://www.emc.com/
collateral/analyst-reports/expanding-digital-idc-white-paper.pdf .

[2] L. Zhang, et al., Named data networking (NDN) project, Technical Report NDN-
0 0 01, 2010. http://named-data.net/publications/techreports/ .

[3] V. Jacobson , D.K. Smetters , J.D. Thornton , M. Plass , N. Brigs , R. Braynard , Net-
working named content, Commun. ACM 55 (1) (2012) 117–124 .

[4] H. Yuan , T. Song , P. Crowley , Scalable NDN forwarding: concepts, issues and

principles, IEEE ICCCN, 2012 .
[5] H. Yuan , P. Crowley , Scalable pending interest table design: from principles to

practice, in: IEEE INFOCOM, 2014, pp. 2049–2057 .
[6] W. You , B. Mathieu , P. Truong , J.-F. Peltier , G. Simon , DiPIT: a distributed

Bloom-filter based PIT table for CCN nodes, IEEE ICCCN, 2012 .
[7] W. You , B. Mathieu , P. Truong , J.-F. Peltier , G. Simon , Realistic storage of pend-

ing requests in content-centric network routers, IEEE International Conference
on Communications in China, 2012 .

[8] H. Dai , B. Liu , Y. Chen , Y. Wang , On pending interest table in named data net-

working, in: IEEE/ACM ANCS, 2012, pp. 211–222 .
[9] M. Varvello , D. Perino , L. Linguaglossa , On the design and implementation

of a wire-speed pending interest table, in: IEEE INFOCOM WKSHPS, 2013,
pp. 369–374 .

[10] Z. Li , K. Liu , Y. Zhao , Y. Ma , MaPIT: an enhanced pending interest table for NDN
with mapping Bloom filter, IEEE Commun. Lett. 18 (11) (2014) 1915–1918 .

[11] H. Dai , J. Lu , Y. Wang , B. Liu , BFAST: unified and scalable index for NDN for-

warding architecture, in: IEEE INFOCOM, 2015, pp. 2290–2298 .
[12] W. So , A. Narayanan , D. Oran , Named data networking on a router: fast

and DoS-resistant forwarding with hash tables, in: IEEE/ACM ANCS, 2013,
pp. 215–225 .

[13] Y. Wang , K. He , H. Dai , W. Meng , J. Jiang , B. Liu , Scalable name lookup in NDN
using effective name component encoding, in: IEEE ICDCS, 2012, pp. 688–697 .

[14] Y. Wang , H. Dai , T. Zhang , W. Meng , B. Liu , GPU-accelerated name lookup with

component encoding, Comput. Netw. 57 (2013) 3165–3177 .
[15] Y. Wang , Y. Zu , T. Zhang , K. Peng , Q. Dong , B. Liu , Wire speed name lookup: a
GPU-based approach, USENIX Symposium on Networked Systems Design and

Implementation, NSDI, 2013 .
[16] W. Quan , C. Xu , J. Guan , H. Zhang , L.A. Grieco , Scalable name lookup with

adaptive prefix Bloom filter for named data networking, IEEE Commun. Lett.
18 (2014) 102–105 .

[17] W. Quan , C. Xu , A.V. Vasilakos , J. Guan , H. Zhang , L.A. Grieco , TB2F: tree-bitmap
and Bloom-filter for a scalable and efficient name lookup in content-centric

networking, IFIP Networking Conf., 2014 .

[18] M. Varvello , D. Perino , J. Esteban , Caesar: a content router for high speed for-
warding, in: ACM ICN, 2012, pp. 73–78 .

[19] M. Degermark , A. Brodnik , S. Carlsson , S. Pink , Small forwarding tables for fast
routing lookups, in: ACM SIGCOMM 1997, Cannes, France, 1997, pp. 3–14 .

20] S. Nilsson , G. Karlsson , IP-address lookup using LC-tries, IEEE J. Sel. Areas Com-
mun. 17 (June, 6) (1999) 1083–1092 .

[21] B. Lampson , V. Srinivasan , G. Varghese , IP lookups using multiway and multi-

column search, IEEE/ACM Trans. Networking 7 (1999) 324–334 .
22] P. Gupta , S. Lin , N. McKeown , Routing lookups in hardware at memory access

speeds, in: IEEE INFOCOM, 1998, pp. 1240–1247 .
23] D. Pao , C. Liu , A. Wu , L. Yeung , K.S. Chan , Efficient hardware architecture for

fast IP address lookup, IEE Proc. Comput. Digit. Tech. 150 (Jan., 1) (2003)
43–52 .

[24] V.C. Ravikumar , R.N. Mahapatra , TCAM architecture for IP lookup using prefix

properties, IEEE Micro 24 (March-April, 2) (2004) 60–69 .
25] I. Sourdis , G. Stefanakis , R. de Smet , G.N. Gaydadjiev , Range tries for scalable

address lookup, in: ACM/IEEE ANCS, 2009, pp. 143–152 .
26] D. Pao , Z. Lu , Y.H. Poon , IP address lookup using bit-shuffled trie, Comput.

Commun. 47 (2014) 51–64 .
[27] IDT Network search engine, http://www.idt.com .

28] D. Pao , Z. Lu , A multi-pipeline architecture for high-speed packet classification,

Comput. Commun. 54 (2014) 84–96 .
29] NDN Project Team, “NDN packet format specification”, http://named-data.net/

doc/ndn-tlv/ .
30] NDN Project Team, “NDN protocol design principles”, http://named-data.net/

project/ndn- design- principles/ .
[31] G. Carofiglio , M. Gallo , L. Muscariello , D. Perino , Pending interest table sizing

in named data networking, in: ACM ICN, 2015, pp. 49–58 .

32] B.H. Bloom , Space/time trade-offs in hash coding with allowable errors, Com-
mun. ACM 13 (1970) 422–426 .

[33] D. Perino , M. Varvello , A reality check for content centric networking, in: ACM
ICN, 2011, pp. 44–49 .

34] H. Song , F. Hao , M. Kodialam , T.V. Lakshman , IPv6 lookups using distributed
and load balanced bloom filters for 100 Gbps core router line cards, in: IEEE

INFOCOM, 2009, pp. 2518–2526 .

[35] A. Afanasyev, C. Yi, L. Wang, B. Zhang, L. Zhang, “Scaling NDN Routing: Old
Tale, New Design”, Technical Report NDN-0 0 04, 2013.

36] N.L.M. van Adrichem , F.A. Kuipers , Globally accessible names in named data
networking, IEEE INFOCOM WKSHPS, 2013 .

[37] G. Rossini , D. Rossi , M. Garetto , E. Leonardi , Multi-terabyte and multi-Gbps in-
formation centric routers, IEEE INFOCOM, 2014 .

38] R.B. Mansilha , L. Saino , M.P. Barcellos , M. Gallo , E. Leonardi , D. Perino , D. Rossi ,
Hierarchical content stores in high-speed ICN routers: emulation and proto-

type implementation, in: ACM ICN, 2015, pp. 59–68 .

39] Y. Thomas , G. Xylomenos , C. Tsilopoulos , G.C. Polyzos , Object-oriented packet
caching for ICN, in: ACM ICN, 2015, pp. 89–97 .

40] C. Yi , A. Afanasyev , L. Wang , B. Zhang , L. Zhang , Adaptive forwarding in named
data networking, ACM SIGCOMM Comput. Commun. Rev. 42 (3) (2012) 62–67 .

[41] G. Carofiglio , M. Gallo , L. Muscariello , ICP: design and evaluation of an inter-
est control protocol for content-centric networking, in: IEEE INFOCOM, 2012,

pp. 304–309 .

42] A.J. Abu , B. Bensaou , J.M. Wang , Interest packets retransmission in lossy
CCN networks and its impact on network performance, in: ACM ICN, 2015,

pp. 167–176 .
43] F. Pike, J. Alakuijala, CityHash: fast hash functions for strings, 2011. http://code.

google.com/p/cityhash .
44] J.-P. Aumasson, D.J. Bernstein, Siphash: a fast short-input PRF, Cryptology

ePring Acrhive, Report 2012/351, 2012. http://eprint.iacr.org .

45] M.V. Ramakrishna , E. Fu , E. Bahcekapili , Efficient hardware hashing functions
for high performance computers, IEEE Trans. Comput. 46 (1991) 1378–1381 .

http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf
http://named-data.net/publications/techreports/
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0026
http://www.idt.com
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0027
http://named-data.net/doc/ndn-tlv/
http://named-data.net/project/ndn-design-principles/
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0038
http://code.google.com/p/cityhash
http://eprint.iacr.org
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30255-9/sbref0041

	Hardware accelerator to speed up packet processing in NDN router
	1 Introduction
	2 Packet processing challenges in NDN
	3 Related work
	3.1 Related work on the design of FIB, CS and protocol issues

	4 Proposed method
	4.1 Implementation of the hardware tables
	4.2 Performance evaluation and comparison

	5 Concluding remarks and future work
	 Acknowledgments
	 References

